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INTRODUCTION 

1.1   BACKGROUND 

Flying qualities requirements for military aircraft 

are currently specified in MIL-F-8785C, "Military Specifica- 

tion - Flying Qualities of Piloted Airplanes." The principal 

tenet of MIL-F-8785C is that the dynamics of the overall air- 

craft system -- as perceived by the pilot during controlled 

flight -- can be described and evaluated in terms of simpli- 

fied dynamic models.  The specification does not discuss the 

principles of aircraft design nor does it describe how the 

designer ensures that the specification be met.  Conventional 

aircraft typically have simple dynamic descriptions which 

match those used in MIL-F-8785C.  However, the advent of 

highly-augmented and control-configured aircraft have brought 

a dramatic change in the potential complexity required of a 

full dynamic description. 

Highly-augmented and control-configured aircraft dif- 

fer from conventional aircraft in the number (order) of dynamic 

modes that are present.  Highly-augmented aircraft introduce 

pre-filters and flexible mode filters which add modes to the 

closed loop response.  Verification that an aircraft complies 

with the requirements on dynamics is performed principally 

through equivalent system matching (exceptions are the time- 

domain roll-sideslip coupling and roll performance require- 

ments on the actual response of the aircraft).  The equivalent 

systems methodology produces an equivalent of the augmented 

aircraft dynamics by matching the actual high-order system to 

a low-order system like those in the specification.  Flying 



qualities are then evaluated in terms of this equivalent low- 

order system. 

A serious restriction of the methodology used in 

MIL-F-8785C is that only motions about steady-trimmed flight, 

based on linear equations of motion, can be considered.  The 

low-order systems in the specification are only valid for per- 

turbations about equilibrium flight of that aircraft.  Large- 

amplitude combat maneuvers can not be adequately specified 

because of an inadequate dynamic representation of the air- 

craft in such maneuvers; the nonlinear, time-varying character 

of the full aircraft equations of motion causes these diffi- 

culties . 

Another restriction of M1L-F-8785C is that only 

single-input/single-output dynamics are described, such as 

longitudinal control stick force relative to normal accelera- 

tion.  However, in many critical situations of flight the pilot 

is commanding multiple inputs and the aircraft is responding 

with multiple outputs in its natural dynamics of translation 

and rotation. 

This program researched innovative methods for ana- 

lytically assessing the flying qualities of aircraft under any 

controllable maneuver.  The research was in response to the 

two principal limitations of M1L-F-8785C noted above.  The 

research effort pursued those results in nonlinear system 

theory and analysis that would accommodate the full nonlinear 

six-degree-of-freedom equations of motion and could lead to a 

flying qualities formulation for the overall multivariable air- 

craft system in any maneuver.  As is outlined in the remainder 

of this chapter and detailed in this final technical report, 

the Nonlinear Flying Qualities (NFQ) research effort led to 

two main results: 



• A technique analogous to the equivalent 
systems methodology (herein called 
canonical systems theory) which over- 
comes two major limitations of equivalent 
systems: the restrictions of single-input, 
single-output and of time-invariance 

• A generic criterion for characterizing 
aircraft dynamic behavior in any maneuver 
through the use of a nonlinear relative 
controllability theorem. 

Together, the two results are combined into a methodology that 

can provide the basis of a new flying qualities specification 

"or aircraft performance in unsteady large amplitude maneuvers, 

with respect to multiple-input, multiple-output time-varying 

dynamic models. 

1.2   PROGRAM OVERVIEW 

The research goal was to extend the current flying 

qualities formulation of MIL-F-8785C to: 

• Include unsteady, large-amplitude flight 
maneuvers (e.g., air combat maneuver 
profiles) 

• Include multiple-input, multiple-output 
dynamics (e.g., simultaneous pitch and 
roll pilot inputs to the vehicle normal 
acceleration and roll response) 

• Include the current flying qualitites 
formulation as a special case 

• Obtain a practical, numerically com- 
putable formulation. 

Once a preferred formulation was found, the NFQ pro- 

gram tested the research product in a simulation of a highly 



augmented, control-configured fighter/attack aircraft; a non- 

linear, six-degree-of-freedom (6-DOF) aeropropulsive model of 

the AFT1-16 aircraft was provided by the Flight Dynamics Lab- 

oratory for the applications test and evaluation. Figure 1.2-1 

illustrates AFTI-16 maneuvers which are typical of those used 

in the 6-DOF simulation analysis. 

The research objectives emphasize the development of 

an applied flying qualities formulation which would provide 

numerical results that encompass, as a limiting case, the cur- 

rent formulation of MIL-F-8785C.  Hence, computability and 

rompctibility with M1L-F-8785C were driving factors in both 

the literature search and the formulation tasks. 
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Figure 1.2-1   Large Amplitude AFTI-16 Maneuvers 



1.3    SUMMARY OF RESULTS 

This section provides a summary of results in terms 

of each of the three NFQ program objectives:  literature search, 

formulation and evaluation. 

1.3.1  Literature Search 

A review of the literature in nonlinear system theory 

focused on three general areas: 

• Local Theory (i.e., linearized systems) 

• Global Theory (i.e., differential geom- 
etry and topology) 

• Functional Analysis (e.g., Volterra 
series). 

In general, global theory was found to ask different questions 

than posed by NFQ.  Global theory does not investigate the 

fine quantitative structure of stability and control, but in- 

stead searches for large-scale descriptions of dynamic behavior 

(e.g., the number and character of bifurcations).  Mathemati- 

cally speaking, global theory is invariant under the action of 

diffeomorphisms  on the state space or the control space.  In 

other words a restructuring of the aircraft modes, e.g., ex- 

changing the lateral and longitudinal modes, would produce the 

same global results but would certainly not meet with pilot 

approval. 

"Definitions of the mathematical terras that will be introduced 
can be found in a glossary at the end of this report and in 
Appendix C. 

tDifferentiable functions from a space into itself, with a dif- 
ferentiable left and right inverse. See Ref. 42 for a compre- 
hensive definition. 



Functional analysis techniques, such as Volterra 

series expansions, were found to be computationally immature. 

However, such techniques are very promising from a purely the- 

oretical point-of-view.  Therefore, many functional analysis 

techniques merit further basic research to develop practical 

computational methods.  Additional detail on the literature 

research in global theory and functional analysis is contained 

in Chapter 4. 

As a result of the above findings, the NFQ research 

program focused on local (linearized) theory.  (Nevertheless, 

as reported in Chapter 2, local theory does include somewhat 

specialized nonlinear analysis results.)  Only the local theory 

was found to offer a mathematical basis which today is mature 

enough to be consistent with the latter two requirements listed 

in Section 1.2:  inclusion of the current flying qualities 

formulation and computability. 

1.3.2 NFQ Formulation 

Table 1.3-1 presents the basic viewpoint of the re- 

ported research, in which any flying qualities formulation is 

seen as consisting of five sequential characteristics.  The 

current effort only involves the first four characteristics; 

the final characteristic must be investigated in future pro- 

grams through unmanned and manned (pilot-in-the-loof) simula- 

tion as well as through actual flight tests. 

The reference flight path of MIL-F-8785C is restricted 

to be steady, equilibrium flight, whereas the NFQ formulation 

applies to any maneuver that can be realized through control 

inputs.  Both formulations refer to a local (linearized) per- 

turbation of the reference flight path, but the resulting 

mathematical structure of NFQ permits the full linearized, 

time-varying dynamics to be considered. 



TABLE 1.3-1 

CHARACTERISTICS OF A FLYING QUALITIES FORMULATION 

--,. FORMULATION 

CHARACTER ISTICS  -~-^^ 
CURRENT NFQ 

Reference Flight Path Steady, Equilibrium Flight: 

♦ = p = q = r = V = Y=0 

General Large Amplitude Maneuvers 

Perturbed Flight Path Linear, Constant Coefficient, 
Single Input/Multiple Output 
Dynamics and Nodal character- 
istics 

Linear, Time-Varying Coefficient, 
Multiple Input/Multiple Output 
Dynamics 

Mathenijtical Structure Low Order, Single Input 
Approximation, mostly in 
Laplace or Frequency Domain 
("Equivalent System") 

Low Order, Multiple Input/ 
Multiple Output Approximation 
in Time Domain ("Canonical 
System") 

Intrinsic 
Flying Qualities 
Parameters 

Equivalent System Parameters 
(Poles, Zeros, Time Delay), 
Roll-Sideslip Coupling, and 
Roll Response 

Functions and Functionals of 
Canonical System Parameters 
(Grammian Singular Values and 
Eigenvectors; etc) 

Extrinsic 
Flying Qualities 
Parameters 

Pilot Opinion 
(Cooper-Harper Rating), 
Pilot-Vehicle Performance, 
and Pilot Workload 

Pilot Opinion; Combat Effective- 
ness; Terrain-Following 
Capability; etc 

The two formulations, within their mathematical struc- 

ture of perturbed dynamics, define intrinsic flying qualities 

to be parameters that describe a simplified or idealized subset 

of mathematical structures.  For example, the current formula- 

tion includes the following equivalent system of longitudinal 

control stick to pitch rate dynamics (Ref. 1, p. 3): 

(s+a)e TS T(s) = K -. 7 
s^ + 2£u)S + ui 

(1.3-1) 

An idealization of the response of an unaugmented aircraft 

which is only one of a great many possible simplifications of 

an actual, higher order transfer function of a current fighter 



aircraft.  Only research into the fifth characteristic (pilot 

opinion) has justified the particular five-parameter version 

of Eq. 1.3-1 (Ref. 2).  Such research has led to correlations 

between these parameters and Cooper-Harper pilot ratings, as 

presented in MIL-F-8785C. 

On the other hand, the NFQ formulation reported here 

considers the full perturbed dynamics described by the vector 

equation 

x = Fx + Gu (1.3-2) 

where F and G, as well as x and u are in general time-varying 

as a result of multiply-perturbed control inputs about those 

that generated the reference flight path.  One possible sim- 

plification (i.e., a candidate canonical system) has G as 

block diagonal and F as block upper triangular such that sta- 

bility lateral-directional dynamics are decoupled, i.e., the 

roll mode is decoupled from the dutch roll and spiral modes. 

One candidate measure of intrinsic flying qualities is the 

relative controllability index of Eq. 1.3-2 (as detailed in 

Chapter 2).  This index is a measure of the margin of control- 

lability enjoyed by a pilot fortunate enough to fly such an 

idealized aircraft, and furthermore, indicates the extent to 

which the approximated dynamics, e.g., decoupled roll, dutch 

roll, and spiral, represent the true aircraft dynamics. 

Like the equivalent system of Eq. 1.3-1, any trial 

definition of a canonical system structure only attains tran- 

scendent importance when further research into extrinsic flying 

qualities demonstrates three conditions: 

•   Canonical system structures with speci- 
fied parameters can be made to represent 

8 



aircraft dynamics that pilots prefer, 
i.e., the canonical system would receive 
a low Cooper-Harper rating 

Aircraft dynamics which cannot be approx- 
imated by any of the specified canonical 
systems are generally perceived by pilots 
to perform poorly, i.e., the aircraft 
receives a high Cooper-Harper rating 

Good modern aircraft (highly augmented 
and control-configured) can be made to 
approximate the canonical simulation 
model. 

Because experiments with pilot-in-the-loop simulation were not 

performed, this effort only provides a NFQ formulation of gen- 

eric applicability to any trial definition of canonical system 

structure and subsequent measure of intrinsic flying qualities 

within the perturbed dynamics of Eq. 1.3-2.  Several examples 

of large amplitude maneuvers, of canonical systems and of in- 

trinsic flying qualities measures were defined to conduct a 

test and evaluation of computability, and thereby to demon- 

strate generic applicability. 

1.3.3 NFQ Test and Evaluation 

The NFQ formulation was tested and evaluated with a 

nonlinear 6-DOF simulation and with special numerical procedures 

to solve the canonical system and relative controllability 

parameters.  The goal of this evaluation was to demonstrate 

the flexibility and numerical reliability of the numerical 

procedures, not to characterize the flying qualities of the 

aircraft modeled in the simulation.  Preliminary assessment of 

the value of these metrics for quantifying flying qualities is 

the recoromended next step. 



Two principal maneuvers were considered:  a wind-up 

turn and a rolling reversal.  The canonical systems methodology 

was applied to time-spaced linearizations of the aircraft dy- 

namics during each of the maneuvers.  The criteria investigated 

included: 

• l|AF|| and ||AG||; the Lo norms of the 

differences between the true-linearized 
and closest-canonical matrices for differ- 
ential equations of the form of Eq. 1.3-2 

• eC ; the relative controllability meas- 
o J 

ure which is computed using the relative 
controllability theorem of Sastry and 
Desoer (described in Section 4.3). 

The norms ||AF|| and | |AG|| measure the closeness of 

the fit between the true perturbed dynamics and a given member 

from the chosen canonical systeir class, and thus can be used 

in a gradient procedure to find the closest canonical system. 

This is analogous to the current practice of finding the closest 

equivalent system (in the Laplace domain) to the true constant 

coefficient, single input linearized dynamics.  If pilots like 

simulated aerospace vehicles that fly exactly like the canonical 

systems and do not like quite different dynamic behavior, then 

||AF|| and ||AG|| could also be used as intrinsic flying quali- 

ties measures with, one expects, strong correlations with pilot 

opinion. 

The intrinsic flying qualities parameter eC  is, in a 

very general sense, analogous to a stability margin such as 

the equivalent system parameter £ of Eq. 1.3-1.  In fact, eCo 
is a controllability margin.  It is conjectured that strong 

correlations exist between eC and extrinsic flying qualities 

such as pilot opinion and close-in combat effectiveness. 

10 



The NFQ test and evaluation investigated the relative 

performance of various canonical system structures in terms of 

(|AF||, | |AG| | and tC  over time, from F upper triangular to 

pure diagonal.  The different canonical system structures were 

examined to discover the best approximation to the time-varying 

dynamics during the maneuver. 

l.A   RECOMMENDATIONS 

The NFQ test and evaluation revealed that the canoni- 

cal systems methodology is a tractable and useful approach to 

characterizing aircraft behavior based on time-varying multi- 

variable descriptions of the aircraft.  The next step is to 

apply the tools that have been developed to calibrate the in- 

trinsic flying qualities (e.g., eC ) against extrinsic flying 

qualities such as pilot opinion and combat effectiveness.  This 

correlation of intrinsic and extrinsic flying qualities can 

form the basis for the next generation military specification. 

However, to avoid the high cost of pilot-in-the-loop simulation 

or flight test, the NFQ formulation can be initially applied 

to an aircraft in an autonomous flight mode.  The primary recom- 

mendations are thus: 

An initial approach to calibrating the 
canonical system-parameters to extrinsic 
flying qualities should be pursued through 
the analysis of autonomous flying modes, 
e.g., automatic landing, terrain-following, 
in which the vehicle performance can be 
quantitatively evaluated without pilot 
opinion 

In a parallel investigation, the canonical 
systems can be flown while adjusting the 
control and guidance algorithms, to yield 
an ideal system structure that provides 
the best performance in a given mission. 

11 



1.5    REPORT ORGANIZATION 

This report is divided into five chapters and three 

appendices which document the research effort and describe the 

flying qualities analysis tools developed to date.  Although 

the literature search was the first task, it is felt that the 

detailed results are of interest only to the basic researcher; 

to permit a simple, unbroken exposition of the NFQ formulation, 

results from the literature search are delayed until Chapter 4. 

Chapter 2 provides an overall account of the NFQ formulation: 

canonical systems theory, its derivation, its relevance to 

flying qualities, and the procedure for numerically computing 

a canonical system match.  Chapter 2 also includes a detailed 

exposition of the relative controllability theorem used to 

define one intrinsic measure of flying qualities.  Chapter 3 

details the numerical results obtained with the canonical sys- 

tems technique and the evaluation of relative controllability. 

Canonical system candidates and the rationale for the specific 

choices are also documented in Chapter 3.  Furthermore, Chap- 

ter 3 presents simulation traces of the true and matched canonic 

systems in the selected large amplitude maneuvers.  Finally, 

Chapter 5 summarizes this report and provides the conclusions 

and recommendations of the NFQ research. 

Appendices A and B provide comprehensive descriptions 

of the numerical procedures developed during the program. 

Appendix A documents the 6-DOF simulation and the specific 

aircraft model employed.  Appendix B documents the Canonical 

System Evaluator (CASE) procedure which implements the method- 

ology discussed in Chapter 2.  Appendix C contains a review of 

underlying mathematical concepts, i.e., induced norms and the 

controllability Grammian, which are mentioned frequently 

throughout this report.  Finally, there is a glossary of the 

mathematical symbols used. 

12 



CANONICAL SYSTEM THEORY AND RELATIVE 
CONTROLLABILITY FOR FLYING QUALITIES ANALYSIS 

Canonical system theory is the basis for the applied 

tlying qualities formulation developed in the NFQ program. 

Although similar to the equivalent systems methodology cur- 

rently applied in flying qualities analysis, canonical systems 

theory admits multivariable time-varying descriptions of the 

aircraft dynamics.  Furthermore, like the equivalent systems 

methodology, canonical systems are produced by computing closest 

approximations to the true aircraft dynamics.  This chapter 

contains a description of the canonical systems theory and the 

general methodology with which it is applied to the aircraft 

flying qualities analysis problem.  Section 2.1 defines canoni- 

cal system theory and describes the specific form that the NFQ 

analysis employs.  Section 2.2 describes how relative control- 

lability can be used as a flying qualities criterion.  Finally, 

Section 2.3 describes the overall process in which the canonical 

systems technique would be used. 

2.1    CANONICAL SYSTEM THEORY 

Canonical system theory can best be understood through 

a discussion of its similarities with realization theory, de- 

composition, canonical forms (e.g., Jordan matrix), structure 

and parameter identification, and the equivalent systems meth- 

odology.  Note that the first three techniques mentioned are 

direct methods, i.e., can be solved in closed form, whereas 

the last three involve approximations and estimation theory. 

Canonical system theory is primarily an approximation method 

13 



that lies in between the two extremes of approximation and 

estimation.  The discussion of these related techniques begins 

with the equivalent systems methodology. 

In flying qualities analysis using the equivalent 

systems methodology, the problem being resolved has the fol- 

lowing elements: 

• Given that modern aircraft differ signi- 
ficantly in their mathematical models 
and in control augmentation and control 
surface configurations, a common air- 
craft dynamic model is required which is 
representative of most aircraft and yet 
maintains simplicity 

• Once an ideal (low-order) or desired 
aircraft dynamic model has been deter- 
mined, the free parameters of the ideal 
(low-order) system must be adjusted such 
that the ideal system best approximates 
the true aircraft dynamics with respect 
to an intrinsic criterion or norm; fur- 
thermore, the acceptable values of these 
parameters must be correlated with 
extrinsic flying qualities criteria 
(e.g., pilot opinion). 

A final obstacle to employing equivalent systems in 

flying qualities analysis is that the norm implied in the sec- 

ond problem element may be very large, hence, suggesting that 

the equivalent system is a poor representative of the true 

aircraft dynamics.  What constitutes a poor match, and when to 

conclude that a poor match is all that can be accomplished, 

have been discussed at some length (Refs. 1-12) but definitive 

answers seem not to have been found -- though a feeling emerges 

that a bad match indicates poor flying qualities. 

The preceding problem statement, i.e., taking an 

ideal system model and matching it to the true dynamics, could 
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describe numerous mathematical techniques.  The phrase -- 

equivalent systems methodology -- refers to the current prac- 

tice in flying qualities analysis of employing a Laplace va-i- 

able transfer function as the mathematical structure for the 

ideal model and adjusting its parameter (i.e., zero, pole, and 

delay) values such that the ideal frequency response matches 

the frequency response of the true aircraft.  This process is, 

therefore, similar to the general concept of decomposition 

(specifically order-reduction) in which excess modes are dis- 

carded and the true dynamics are recast into a lower-order 

model.  Furthermore, this method also includes elements of 

parameter identification (where measurements are considered to 

be perfect). 

The fundamental limitation of equivalent systems re- 

sides in the use of frequency response data of the true dynam- 

ics and not in the general concept.  The use of frequency re- 

sponse data forces the flying qualities analyst to consider 

only steady, equilibrium flight conditions.  The frequency 

response cannot include time-varying and transient phenomenon 

thereby excluding most maneuvers from the equivalent systems 

approach. 

The basic tenets of equivalent systems, i.e., creating 

an idealized system, can be accomplished through a number of 

techniques.  For example, parameter identification can be used 

to identify the unknown parameters of an ideal model, regard- 

less of whether the model is linear, time-invariant or time- 

varying, or nonlinear.  Similarly, as exemplified by Section 4.2 

nonlinear forms of realization theory exist.  Thus it is not 

necessary to work with the frequency response alone; the time- 

domain data can be used.  Nevertheless, the fundamental con- 

cept of equivalent systems is an excellent starting point for 

numerous problems.  Canonical systems expands the basic tenet 
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of equivalent systems by extending the classes of ideal systems 

to time-varying, multivariable state-space forms.  The method- 

ologies for matching the lideal system in canonical systems 

theory, however, is markedly different, because of the dif- 

ferent form of the ideal system and the use of system-theoretic 

properties, e.g., controllability. 

The closest canonical system is that system which is 

closest to the original system in the norm sense and maintains 

the controllability properties of the original system.  The 

relative controllability measure of the canonical system re- 

flects how well the canonical system approximates the original 

nonlinear system.  Consequently, canonical systems surpasses 

the equivalent systems methodology because they are matched to 

the original nonlinear system through controllability, unlike 

equivalent systems which are matched to a linear frequency 

response representation of the aircraft dynamics. 

2.1.1 Canonical System Theory:  Definition 

A canonical system is a class of systems that approxi- 

mates the original system model for a particular solution and 

(ideally) maintains desired properties of the original system. 

For a linear time-varying system, with a desired property 

(e.g., controllability) 

x(t) = F(t)x + G(t)u (2.1-1) 

the canonical systems consist of those systems described by 

x = Fe(t)x + Ge(t)u (2.1-2) 

which satisfies the desired property(s) with 

F (t) ^ F(t) - AF (2.1-3) e 
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Ge(t)  ^ G(t)   - AG (2.1-4) 

where 

IIAFH.   <  ef (2.1-5) 

lAGK.   <  zg (2.1-6) 

are the induced norm of the maps F(t):  Rn ^ Rn, G(t): Rm ^ Rn 

The closest canonical system is that member of a can- 
+ 

onical system class, F or G ,  that minimizes the induced J e    e' 
norm, viz. 

Fc = min ||Fe - F(t)||i (2.1-7) 

Gc = min ||Ge - GU)!!. (2.1-8) 

Similar canonical system classes can be developed for nonlinear 

equations of the form 

x = f(x. u, t) (2.1-9) 

where the canonical system class satisfies 

f = min  ||f (x,u,t) - f(x,u,t)||.  0 < t < T  (2.1-10) 
c  [O.T]  e ' ~ 1 

Note that this induced norm is performed on infinite dimen- 

sional spaces, i.e., Eq. 2.1-10 is a functional optimization 

'See Appendix C  for a discussion of induced norms 
For convenience, the dependence of F and G on 1 

dropped from this point on in the discussion. 
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problem, and hence, would require a much more complicated 

numerical procedure than the parameter optimization problem of 

Eqs. 2.1-7 and 2.1-8. 

In accord with the philosophy stressed throughout the 

NFQ program, the linear time-varying form of canonical system 

theory, Eqs. 2.1-2 to 2.1-8 will be pursued because of its real- 

time computational ease over the nonlinear form, Eqs, 2.1-9 and 

2.1-10."  Furthermore, the key property that will be enforced 

in a canonical system class will be controllability, hence, 

the emphasis on the relative controllability theorem of Sastry 

and Desoer in Chapter 4. 

2.1.2 Second-Order Canonical System Example 

The canonical system definition just outlined can be 

applied to a full aircraft state equation with 12 or more states 

or to simple systems.  As an example consider a second-order 

system 

x = 

Z   Z w   q 

w   q 

x + 

0H   0TEF 

0H   0TEF 

u (2.1-11) 

Equation 2.1-11 is a short-period dynamics approximation where 

x ^ (w, q)T (2.1-12) 

^The relative controllability is useful in both the linear and 
nonlinear canonical systems forms, however, the linear piece- 
wise time-invariant computation procedure of Section A.3 
justifies the use of linear canonical systems theory. 
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includes normal velocity and pitch rate and 

H " [
6
H ' SEF1 (2.1-13) 

are the elevator and flap deflections.  One canonical systen 

class which has a simpler structure is 

x = 
0 

x + 
0 g2 

*1  0 

u (2.1-14) 

where f. and g. represent free parameters of the canonical 

system that will be selected to minimize ||AF||. and llAGM^, 

which were defined in Eqs. 2.1-3 and 2.1-4.  The induced norm 

for the problem in Eqs. 2.1-11 and 2.1-14 is the Ly  norm, 

defined  for  an  arbitrary  raxn  matrix A  as 

_ max 
^ (AA ) i-1 ,n (2.1-15) 

where A is the conjugate transpose of A and A. is the i 

eigenvalue of the product (AA ).  (Note that the right hand 

side of Eq. 2.1-15 is equivalent to the maximum singular value 

of A.  Reliable numerical procedures for computing the singu- 

lar values of a matrix are readily available.)s 

The minimization defined in Eqs. 2.1-7 and 2.1-8 for 

finding the closest canonical system requires a numerical opti 

mization algorithm (see Appendix B).  Solving for the second- 

order example of Eqs. 2.1-11 and 2.1-12 where the numerical 

tA thorough discussion of L and H     spaces and their respective 
P     P 

norms is contained in Ref. 13, Chapter 2, Ref. 14, Section 2.10, 
or Appendix C. 

§See Ref. 13 or Appendix C for a derivation of the L^ 
a matrix as the maximum singular value. 

norm of 
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values for F are representative of the AFTI/F-16 in steady- 

trimmed flight at 829 ft/sec, 

F = 
•2.24 

•0.241 

829 

•10.15 

the closest canonical dynamic matrix is 

•2.20 

0 

828.6 

■10.10 

(2.1-16) 

(2.1-17) 

where F (and subsequently G ) were computed with the numeri- 

cal procedure described in Appendix B. The final L^ norm of 

the canonical system match is 

IIAFM  = .047, ||F||r  = 828, 
Ltry Lin 

(2.1-18) 

Although the L2 norm of the difference between the dynamics 

matrices are quite small (relative to ||F||) their eigenvalues 

are distinctly different 

eigenvalues are simply the diagonal values 

Because F is uppct triangular the 

A(Fc) = -2.2, -10.1 (2.1-19) 

The eigenvalues of the true dynamics can be readily computed. 

\(F)  = -6.2 ± 2.1 i (2.1-20) 

Not only are the magnitudes different but the canoni- 

cal system has two real poles while the true system has a com- 

plex pair. However, the principal tenet of canonical systems 

theory is, if ||AF|| and ||AG|| are small, the true and canoni 

cal systems will share the same properties.  One of the most 
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important shared properties is trajectory equivalence, i.e., 

the property that the solutions of the true and canonical sys- 

tems are within a prescribed tolerance.  This property can 

also be expressed mathematically as, 

I|Ax|| < e (2.1-21) 

where 

llAxll I   ||x(t) - xc(t)|| (2.1-22) 

For the second-order example being considered, the solutions 

are, according to the variation of constants formula (see 

Ref. 15). 

x(t) = e 
F(t-t ) o 

5(t0) (2.1-23) 

where the state transition matrix is the matrix exponential 

F(t-to) 
e       and 

Fc(t-t ) 
xc(t) = e c   0 x(to) (2.1-24) 

The second-order system is sufficiently uncomplicated to permit 

the analytical computation of the matrix exponential, hence, 

(At=t-t0) 

FAt 

e-6.2At(l 89 sin 2 lAt 
+ cos 2.1 At) 

e-6.2At( 0116 sin 2.iAt) 

e-6.2At(595_2 sin 2.lAt) 

e-6.2At(1>8o j.;? 2Ut 

+ COs 2.lAt) 

(2.1-25) 
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and :or the canonical system 

F At c 
•2.2At 10A.9(e-10-lAt - e-2-2At) 

■lO.lAt 

(2.1-26) 

Although the transition matrices in Eqs. 2.1-25 and 

2.1-26 appear significantly different, the fact that ||AF|| is 

small, will cause the solutions generated with Eqs. 2.1-23 and 

2.1-24 to lie within a tolerance governed by ||AF||.  The 

bounds on the magnitude of Ax(t) (i.e., the difference between 

x(t) and x (t)) will be derived in the following section.  The 

trajectory equivalence of the second-order system under con- 

sideration can be demonstrated by computing Eqs. 2.1-23 and 

2.1-24 using the solutions of the transition matrices just 

given in Eqs. 2.1-25 and 2.1-26. 

Figure 2.1-1 contains the time responses of the true 

and canonical systems of Eqs. 2.1-23 and 2.1-24, with respect 

to identical initial conditions.  Notice that only the true 

system trajectory exhibits a second-order (i.e., damped sinu- 

soidal) response in pitch rate.  This phenomenon reflects 

Eqs. 2.1-25 and 2.1-26 which show that the canonical system 

transition matrix has no sinusoidal functions.  The difference 

in responses truly originates from the complex eigenvalues of 

the true system, whereas the canonical system has real eigen- 

values and hence, produces only first-order responses.  The 

reason the canonical system does not have complex eigenvalues 

is the structure itself. 

The triangular canonical system structure of Eq. 2.1-24 

will not admit complex eigenvalues.  This arises because only 

real-valued matrices are deemed appropriate for the canonical 
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Figure  2.1-1 Second-Order Example:  True and Canonical 
Responses to Initial Conditions 

systems which are employed to model physical systems,  e.g., 

aircraft dynamics.  The dynamics matrix in Eq. 2.1-14 is upper 

triangular, hence its eigenvalues are the diagonal elements, 

thus it can have only real eigenvalues.  The canonical system 

for this second-order example is inadequate because, regardless 

of how the match is computed, F can only have real eigenvalues, 

f, and f^.  Yet, it is typically the case that the short-period 

mode of an aircraft is composed of a complex pair of eigenval- 

ues.  Later, in Chapter 3, in the discussion of canonical sys- 

tem classes for 6-DOF aircraft dynamics, the issue of creating 

structures which admit complex eigenvalues is addressed.  Let 

it suffice to say that if the canonical dynamics matrix or a 

submatrix is upper (or lower) triangular, diagonal, or in 

Jordan form, then the eigenvalues of that maLrix or submatrix 

will only be real and thus, may not represent the ideal dynamic 

structure desired. 

^Although complex-valued differential equations do arise in 
mathematical physics, the classical mechanics description of 
the aircraft equations has coefficients which represent phys- 
ical quantities such as mass, or are elements of a direction 
cosine matrix. 
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The analysis just presented can be extended to include 

the canonical control matrix.  For the numerical example under 

consideration (for the same trim point used earlier). 

G = 
-3.52 

-.571 

-7.99 

-.394 
(2.1-27) 

The closest canonical control matrix (for the class defined in 

Eq. 2.1-14) is 

G = c 
0     -7.99 

-.571     0 
(2.1-28) 

where 

||AG|| = 3.52, ||G!| = 8.75 (2.1-29) 

The comparison of the trajectory for the inhomogeneous canoni- 

cal system (where the control inputs u are non zero) versus 

the inhomogeneous true system is easily accomplished with the 

variation of constants formula (Ref. 15) viz. 

x(t) = e    0 x(to) +7  eMt x)  G u(t)di    (2.1-30) 

for the true system (Eq. 2.1-11) and 

Fc(t-to)        ft     Fc(t-X x U) = e c   0 x(t ) +y  e c G u(x)dt  (2.1-31) 

o 

for the canonical system (Eq. 2.1-1A).  An analysis of the 

trajectories is straightforward using the same transition ma- 

trices defined in Eqs. 2.1-25 and 2.1-26. 
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The most significant concept illustrated by the pre- 

vious example is that, like equivalent systems, the canonical 

systems methodology tries to minimize a distance measure between 

a true and ideal system by adjusting the parameters of the 

ideal system.  The ideal of the second-order example just pre- 

sented was that the dynamics matrix should be upper triangular 

and the controls decoupled.  This example is not especially 

useful in light of the fact that the true short-period dynamics 

did not necessarily require simplification.  But consider the 

case when there is a control augmentation system with an inte- 

grator in the forward loop.  Equation 2.1-11 then becomes 

x = 

z   z   ZT w   q   1 

Mw  M
q  

Ml 

*«  l
q  h 

x + 

ÖH   6TEF 

Me      Mc 
0H   0TEF 

0H   0TEF 

u (2.1-32) 

A candidate canonical system may then be one which decouples 

the integrator state from the short-period dynamics and con- 

trols.  Hence, 

x = -c 

0 

f2  0 

h      0 
0   f, 

«1 
82 1 

^c   + g3 84 

0 0 

u (2.1-33) 

Furthermore, ft- may be arbitrarily forced to zero.  The form 

of the canonical system in Eq. 2.1-33 yields a system in which 

the augmentation is completely decoupled, i.e., an implicit 

model reduction has been enforced where a low-order system 

approximates the augmented dynamics.  Thus the submatrices 

formed by f, - f, and g, - g, should yield the second-order 

approximation to the dynamics in Eq. 2.1-32. 
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2.1.3 Canonical Systems and Trajectory Equivalence 

The mathematical basis for canonical system theory is 

derived from functional analysis and the theory of differen- 

tial equations.  Fundamentally the problem of linear canonical 

system theory is to demonstrate that a perturbation in F(t) or 

G(t), i.e., AF(t) or AG(t) where 

||AF(t)|| i ef (2.1-34) 

I|AG(t)|| < e (2.1-35) 

produces a perturbed solution that lies in the neighborhood of 

the nominal solution, viz, 

I |A<t)(t)|| < e^ (2.1-36) 

where A(j>(t) is the difference between the solutions of the 

differential equations (a vector), Eqs. 2.1-1 and 2.1-2.  For 

example, Ref. 13 uses the criterion of matrix measure (not a 

true norm) to bound the solutions of a linear time-varying 

differential equation.  The theorem is as follows (Ref. 13, 

p. 35):  given 

x(t) = F(t) x(t) (2.1-37) 

where the solution of Eq. 2.1-14 is 

r *      '       ' 
x(t) = exp {J      F(T)dT} x(tor (2.1-38) 

o 

^Equation 2.1-38 holds for any F(t) that commutes with itself 
over time, see Ref. 15 and Appendix C. 
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Then Eqs. 2.1-37 and 2.1-38 satisfy the inequalities 

|x(to)| exp {- J  Ml-F(T)]di}  <  |x(t)| 

% 

J  M(F(t)ldi < |x(to)| exp {J  M(F(t)ldi}      (2.1-39) 

o 

where (j{F(t)} is the matrix measure of F, 

M(F) ^ lim (||I+ 0F| | - l)/« (2.1-40) 
(MO 

where F may be constant or time-varying.  (See Ref. 13, p. 30 

for proof of the existence of the limit in Eq. 2.1-40.)  Note 

that the matrix measure is not a norm because \i(F)  =  0 does 

nor, imply that F = 0.  The following properties of the matrix 

measure will be of use in the ensuing discussion: 

M(I) = 1  , M(-I) = -1 (2.1-41) 

M(0) = 0 (2.1-42) 

- IIFII < -M(-F) < M(F) < IIFII (2.1-43) 

M[AF1 + (1-A)F2] < AM(F1) + (l-A)p(F2) (2.1-44) 

i.e.,p:     Cnn->Ris  convex 

-  M(-F)|X|   <   |Fx| (2.1-45) 

and 

lM(F1)   -  M(F2)|   <   |M(F1-F2)|   <   ||F1-F2II (2.1-46) 
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Using Eqs. 2.1-A1 to 2.1-46; Eq. 2.1-39 can be recast into an 

inequality based on the norms of F, albeit a less tight in- 

equality, 

I  "F(x |x(to)| exp {- J  ||F(x)||dT}  < |x(t)| 

o 

J  ||F(t)||di < lx(to)| exp { j  (|F(T)||dt] (2.1-47) 

The proof follows from 

D+n(t) < M(F(t)) x(t) (2,1-48) 

D+n(t) < ||F(t)|| n(t) (2.1-49) 

where n(t) = |x(t)|, Eq. 2.1-49 follows from the relationship 

between the matrix measure and norm in Eq. 2.1-43.  Assuming 

x(t) is a nonzero solution of the differential equation, 

Eq. 2.1-38, then Eq. 2.1-49 becomes 

D+n(t)/n(t) = ||F(t)|| (2.1-50) 

Integrating Eq. 2.1-50 yields the right hand inequality of 

Eq. 2.1-47. A similar argument with n(t) = -|x(t)| can be 

used to prove the left-hand inequality of Eq. 2.1-47. 

The techniques above can be used to show that the 

bounds of Ax, the difference in the true and canonical system 

trajectories is governed by the norm of AF.  First note that 

the true and canonical differential equations are 
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xT = F xT (2.1-51) 

x = (F - AF) x (2.1-52) -c —c 

Subtracting Eq. 2.1-52 from Eq. 2.1-51 and defining 

yields 

Ax = xT - x (2.1-53) —  —T  —c 

Ax = F Ax + AF xc (2.1-54) 

which can be further manipulated to yield 

Ax = (F - AF)Ax + AF xT (2.1-55) 

The second term on the right hand side of Eq. 2.1-55, AF x^, 

which is a function of the true trajectory, is a driving term 

of the Ax differential equation.  Hence, the solution of 

Eq. 2.1-55 using the variation of constants formula is 

(F-AF)(t-t ) 
Ax(t) = e " A^<to) 

+ J  e(F"AF)l (AF xT(i))di (2.1-56) 

o 

According to the definition of the canonical system, the true 

and canonical systems have the same initial condition. 

Thus, 

Ax( 

Ax(to) = 0 (2.1-57) 

t) = J  e(F"AF)x (AFxT(T))dT (2.1-58) 
t o 
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Equation 2.1-58 yields the difference between the true and 

canonical system trajectories as a function of time.  As ex- 

pected, if AF approaches 0 which implies that ||AF|| approaches 

0 then Ax(t) is zero for all time; the true and canonical sys- 

tem trajectories are equivalent.  Our goal, however, is to 

find the bounds on Eq. 2.1-58 using the techniques elaborated 

in the beginning of Section 2.2.  This analysis yields the 

following inequality 

. -r ilAFM eXp(-||F-AF! j) (- f   jx(t)|)   < |Ax(t)|| 

I ^      -1 < IIAFM exp(IIF-AFII) (I  |x(t)|)       (2.1-59) 
't 

where AF and F are assumed to be piecewise constant matrices. 

Equation 2.1-59 provides bounds on acceptable pertur- 

bations to the true dynamics matrix such that the solution to 

the perturbed solution lies within a neighborhood of the origi- 

nal solution.  Thus, Eq. 2.1-59 supplies a basis for the linear 

canonical system theory of Eqs. 2.1-2 to 2.1-9, where the prop- 

erty of interest is that the solution of canonical system class, 

x (t), lie within some neighborhood of xT(t).  The property of 

interest that is being maintained is a common trajectory. 

Hence, one can consider a closest canonical system which main- 

tains the trajectory property only, to be a time-domain version 

of equivalent systems.  A further distinction is that the ca- 

nonical system classes can include multivariable and time- 

varying systems.  Although two alternatives for bounding the 

*The extension to the case where the true and canonical sys- 
tems are inhomogeneous is straightforward. 
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dosest canonical system have been presented, where the one 

based on matrix measure is the tighter bound, only the norm 

based criterion is amenable to the final numerical solution 

technique.  This choice was made because the matrix measure 

|j(A) on Lj is only numerically defined for square matrices, 

hence it cannot generally be used to find the canonical con- 

trol matrix G . c 

The relationship between the generic canonical system 

theory presented thus far and other systems theory concepts 

(e.g., controllability) arises when one considers the applica- 

Lion of canonical system theory to flying qualities analysis. 

As implied in the previous discussion, a class of canonical 

systems can be chosen for maintaining a number of properties 

rather than just one.  A second property, which the NFQ re- 

search has concluded to be essential, is the controllability 

of the true aircraft dynamics model. However, as is documented 

in Chapter 4, controllability and/or reachability are typically 

presented as binary results, a system is either controllable 

or not.  Hence, the detailed exposition of the relative con- 

trollability theorem in Section 4.3.  Section 2.2 of this chap- 

ter describes how relative controllability is employed to de- 

rive a closest canonical system which maintains the trajectory 

and controllability properties of the true system. 

2.2   RELATIVE CONTROLLABILITY 

The use of the relative controllability theorem arises 

naturally in the context of linear canonical system theory. 

If the canonical system matrices differ from the true system 

matrices, 

tMr (A) = mfx \.(^(A+A*)) whereas MAM,  = mfX X.(AA*) 
1-.Q -Li Lin i. X 
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AF = F - Fc (2.2-1) 

AG=G-G (2.2-2) c 

then the differential equation of the canonical system becomes 

x = Fx + Gu - AFx - AGu (2.2-3) 

The last two terms of Eq. 2.1-30 can be interpreted as, 

ehf'x.u) = -AFx - AGu (2.2-4) 

Thus, Eq. 2.1-30 becomes 

x = Fx + Gu + eh(x,u) (2.2-5) 

The form of Eq. 2.2-5 is identical to that of Eq. 4.3-9 in Sec^ 

tion 4.3.  Consequently, the relative controllability theorem 

can be used to determine under what conditions does Eq. 2.2-5 

maintain the controllability properties of the true system, 

Eq. 2.1-1.  Controllability is ensured by computing e as a 

function of ||AF|| and ||AG||, the differences between the 

canonical and true, system and control matrices.  Squaring 

Eq. 2.2-4 gives 

(eh(x,u))2 = xT AFT AF x + 2xT AFT AGu 

+ uT AGT AG u (2.2-6) 

In Section 4.3 it is established that the relative controlla- 

bility theorem requires that h(x,u) satisfy a Lipschitz condi- 

tion, then taking norms of Eq. 2.2-6 yields. 

32 



£2C^ < I|AF|I2 xTx + ||AG||2 uTu 

+ 2  IIAFI|2(x • x) IIAGI|2(u • u) (2.2-7) 

which can be simplified further to yield 

£2C2 < (IIAFM ||x|| + MAGI | ||u||)2 (2.2-8) 

£Co < MAFJI Mxll + IIAGM liuM (2.2-9) 

Finally, to guarantee that the canonical system satisfies the 

control! 

satisfy 

controllability properties of the true-linearized, eC  must 

- e C < eC < e C (2.2-10) o o —  o — o o 

where e C  represents the maximum perturbation of the true 

system, computed according to the relative controllability 

theorem of Sastry and Desoer.  In Chapter 4, Eq. 4.3-12 con- 

tains an explicit formula for computing the maximum perturba- 

tion, e C .  Later, in Section 4.3, the relative controllability 

theorem and the techniques for computing the controllability 

measure, E-C . are presented in detail.  Chapter 3 of this 

report discusses the use of the elements of canonical systems 

theory as intrinsic flying qualities criteria. 

2.3   NFQ ANALYSIS FORMULATION 

In the preceding sections two major themes have been 

developed: the use of canonical systems theory to determine an 

idealized (low-order) aircraft dynamics representation and the 

use of relative controllability as a flying qualities criterion. 

This section will describe how these two concepts provide the 

basis for an applied nonlinear flying qualities formulation. 
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The role of canonical systems theory and relative 

controllability becomes clear when one expands upon the analogy 

with the equivalent system approach.  If the canonical system 

structure (e.g., block diagonal) is embodied in a new specifi- 

cation, then the free parameters of this structure and its 

relative controllability would be specified to correspond with 

desired pilot workload and pilot/aircraft performance in speci- 

fic combat aianeuvers and mission profiles.  Hence, the second 

step involves calibrating the canonical system parameters 

(i.e., intrinsic flying qualities) through correlation with 

pilot opinion (i.e., extrinsic flying qualities parameters) in 

simulation and flight test.  Then in application of the NFQ 

formulation, the canonical system structure could be matched 

with the true aircraft dynamics to verify compliance with the 

specification.  Verifying compliance involves three subtasks: 

verifying that  the magnitude of ||AF|| and ||AG|| are within a 

range to permit a useful match, verifying that the relative 

controllability measure lies within the specified tolerance, 

and verifying that the parameters of the matched canonical 

system lie within the tolerance prescribed. 

2.3.1  Step One:  Selecting a Canonical System Structure 

The selection of a canonical system structure truly 

requires a process in which all three steps of the NFQ analysis 

are performed iteratvely until a useful canonical system struc- 

ture is found.  The iterative process is performed until a 

canonical system structure is found that satisfies three ob- 

jectives: 

The canonial system structure is reason- 
able enough to permit an adequate canon- 
ical system matching to take place, 
i.e., matches can be found for which 
||AF|| and ||AG|| are small (relative to 
the conditions set forth in Section 2.1.3) 
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• The canonical system strun u / must con- 
tain recognizable parameters   t can be 
related to flying qualitio- — as to 
quantitatively determine rhe ..pecifi- 
cation 

• Finally, the canonical system must nom- 
inally be controllable and must provide 
a sensitive relative controllability 
measure, i.e., a change in the canonical 
system should cause changes in the rela- 
tive controllability. 

Meeting the first objective simply requires that the canonical 

system maintain certain properties generic to the aircraft 

dynamics.  For example, if one chose a block-diagonal F matrix 

for the canonical system structure, then those blocks should 

correspond to dynamics modes that are approximately decoupled, 

e.g., one block contains the longitudinal modes, the other 

lateral-directional for maneuvers in the vertical plane. 

The second objective is an extension of the first and 

also provides compatibility with the current flying qualities 

specification.  The third-order example depicted in Eq. 2.1-33 

reflects how elements of the canonical F and G matrices corres- 

pond to particular modes of the aircraft dynamics.  For example, 

the parameters f, through f/ correspond to the linear equation 

coefficients Z , Z , M , M .  Another example would be a dia- 

gonal canonical system F matrix.  In that case the diagonal 

elements correspond to the modal inverse time constants present 

in the aircraft dynamics.  In either example, the parameters 

of the canonical system correspond to measurable parameters in 

the true aircraft dynamics.  Hence, quantitative specification 

of  he parameters can be determined from the true aircraft 

data. 

The third objective is obviously nec3ssary if the 

relative controllability measure is to be of any use.  However, 
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the key point of the third objective is to search for a canon- 

ical system structure which leads to a sensitive controllability 

measure.  Thus, the NFQ analysis can be used to detect small 

changes in the controllability of an aircraft as it executes a 

maneuver or is modified through the addition and jetison of 

stores or the consumption of fuel. 

Note that experiments in execution of Step One of the 

NFQ formulation -- selection of a canonical system structure -- 

are documented in Chapter 3 of this report where five canonical 

system structures are developed.  Further discussion can be 

found in Section 3.2, where the rationale for selecting the 

canonical system structures with regard to the first two objec- 

tives above is explored. 

2.3.2 Step Two:  Correlating the Intrinsic and Extrinsic 
Flying Qualities Criteria 

Correlating the intrinsic and extrinsic flying quali- 

ties is a step that necessarily involves pilot-in-the-loop 

simulation and/or flight test.  Although the resources of the 

NFQ research effort did not permit any experimentation in this 

area, it is envisioned that, as is the case of MIL-F-8785, 

Revisions B and C (Ref. 2), pilot-in-the-loop simulations will 

be a major source of data.  However, some analytical specifica- 

tion (i.e., without pilot opinion) of the intrinsic/extrinsic 

flying qualities can be determined for simulated-pilot flight 

modes in which an analytic model of a pilot is used and the 

performance of the aircraft can be quantitatively measured, 

e.g., the rms acceleration and altitude in terrain following. 

Further discussion concerning the application of the NFQ analy- 

sis to autonomous can be found in the recommendations for fur- 

ther research in Chapter 5. 
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2.3.3  Step Three:  Computing the Canonical System Match 
and the Relative Controllability Measure 

The presentation of the canonical systems theory and 

the relative controllability imply that the actual use of these 

concepts requires little additional work.  However, a number 

of issues must be resolved regarding the form of true dynamics 

that are to be used (e.g., closed-form nonlinear equations?) 

in the computation of the closest canonical system.  Further- 

more, a strategy regarding the representation of the time- 

varying components of the true and canonical systems is re- 

quired . 

The two aforementioned issues were resolved by: 

• Choosing a six-degree-of-freedom simula- 
tion with table look-up of the aerodynamic 
data and automated linearization as the 
tool which supplies the true dynamic 
description of the aircraft 

• Adopting piecewise time-invariant de- 
scriptions for the method of represent- 
ing the time-varying components of the 
true and canonical systems. 

Figure 2.3-1 depicts the process by which the time-varying 

nonlinear dynamics are decomposed into piecewise linear time- 

invariant dynamics, valid over the interval [t.,t.+1].  Since 

each of the F. and G. are linear, the true system dynamics are 

compatible with the linear canonical system theory described 

in Section 2.1 and the relative controllability theorem des- 

cribed in Sections 2.2 and 4.3. 

The canonical system matching procedure then becomes 

the process of matching each F., G. pair independently at each 
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Figure  2.3-1 Linear, Piecewise-Time-Invariant 
Description of the Aircraft Dynamics 

time increment.  The collection of linear time-invariant canon- 

ical systems F  , G  can then be taken as a group to represent 
i   i 

a linear piecewise time-invariant representation of the air- 

craft dynamics.  Further details concerning the specific com- 

putation that must take place can be found in Appendix B, which 

describes the CAnonical System Evaluator (CASE) software and 

in Subsection 4.3.3 which describes the computation of the 

relative controllability index for the linear, piecewise-time- 

invariant dynamics.  The linear, piecewise-time-invariant 

representation is a discrete-time approximation to the origi- 

nal continuous dynamics.  The discrete-time approximation 

simplifies the required numerical computation and furthermore, 

is the basis of all simulation, (i.e., all numerical integration 

involves approximating continuous integration as a sequence of 

discrete-time computations). 

In the next chapter, candidate canonical systems 

classes will be described and computation of the closest can- 

onical system and the relative controllability measure for 

sample large amplitude maneuvers will be presented. 

38 



3. NONLINEAR FLYING QUALITIES 
NUMERICAL RESULTS AND EVALUATION 

The test and evaluation of the NFQ formulation pre- 

sented in Chapter 2 was conducted with a nonlinear six-degree- 

of-freedom (6-DOF) aircraft model with fully-coupled aerody- 

namic data.  The AFTI/F-16 aircraft was obtained and subse- 

quently implemented in a generic 6-DOF simulation as the test 

vehicle.  The simulation is used as an integral part of the 

canonical system analysis results that are presented in this 

chapter.  Section 3.1 decribes the overall canonical system 

analysis process and explains the role of each tool developed: 

the 6-DOF simulation and the canonical system evaluator.  Sec- 

tion 3.2 documents the canonical system classes (candidate 

structures) employed in the flying qualities analysis experi- 

ments.  Section 3.3 contains highlights of the numerical re- 

sults and the criteria produced for two sample maneuvers. 

Finally, Section 3.A concludes the chapter with an examination 

of the relationship between the equivalent systems and canonical 

systems methodologies, and speculates on the potential of using 

previously collected pilot opinion data. 

3.1   NONLINEAR FLYING QUALITIES ANALYSIS PROCESS 

The canonical systems based flyiag qualities analysis 

entails: the use of an accurate aircraft model and 6-DOF simu- 

lation, the generation of control histories for large-amplitude 

maneuvers, the coordination of the simulation and the canonical 

systems numerical procedure, and the computation of appropriate 

candidate flying qualities criteria.  Figure 3.1-1 depicts the 
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Figure 3.1-1   Canonical System Analysis Process 

overall flying qualities analysis process and the relation- 

ship of the two major software tools: the 6-DOF simulation, 

described in Appendix A, and the CAnonical System Evaluator 

(CASE), described in Appendix B. 

The generation of large-amplitude maneuver control his- 

tories is an integral part of the 6-DOF simulation.  An optimal 

control procedure was initially considered for generating the 

maneuvers.  Initialization of the optimization procedure, how- 

ever, required an initial trajectory which was of the same form 

as the final desired maneuver, e.g., wind-up turn.  Consequently, 

once the initial maneuver was generated (via a guidance law in 

the 6-DOF simulation) the refinement of that trajectory was felt 

to be unnecessary.  Using the 6-DOF simulation to generate ma- 

neuvers did mandate the addition of normal acceleration and roll 
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attitude autopilots, to augment the unstable open-loop AFTI/ 

F-16 aircraft.  This augmentation was necessary to permit the 

use of the acceleration and roll attitude command guidance 

laws used to generate the maneuver control histories.  The 

guidance laws are more fully described in Section 3.3. 

The linearization depicted in Fig. 3.1-1 is performed 

by the 6-DOF simulation at points in the trajectory specified 

8f    8f 
at run time.  The linearized data, contained in the 5— and ^— 

OX      o U 

matrices are then used by the canonical system evaluator to 

compute the closest canonical system. 

The lower left element of Fig. 3.1-1, "Mathematical 

Structure", is the step in which one selects the canonical 

system class, i.e., the free parameters of the system matrices 

FQ and G^ which are to be matched to the true linearized ma ■ e     e 
trices computed in the 6-DOF simulation.  Section 3.2 of this 

chapter describes the rationale for selecting a canonical sys- 

tem class through the description of five canonical system 

classes which have been permanently implemented in the CASE 

software. 

Once the linearized matrices have been obtained and 

the canonical system class selected, the parameters of the ca- 

nonical system class are optimized to produce the closest canon- 

ical system, i.e., matrices F and G .  The closest canonical 

system matrices and the respective norms ||^F|| and ||AG|| are 

then used to evaluate the intrinsic flying qualities, which per 

Chapter 2 are the relative controllability index and the norms 

||AF|| and ||AG||.  As a final appraisal the true trajectory 

and a perturbed trajectory generated with the canonical system 

are compared.  This comparison establishes the performance of 

the closest canonical system in achieving a trajectory which 

lies within a neighborhood of the original trajectory. 
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3.2 CANONICAL SYSTEM CANDIDATES 

The canonical system candidates are representative 

canonical system classes chosen for the numerical investigation 

of flying qualities.  In accordance with the philosophy de- 

scribed in Chapter 2, the classes are chosen for simplicity, 

faithfulness to the aircraft model, and the facility to yield 

flying/handling qualities criteria.  The structures presented 

in this section satisfy these constraints and range from the 

purely virtual, i.e., the canonical system represents a non- 

existent, ideal structure, to the aircraft specific, in which 

decoupling of lateral and longitudinal motion is enforced. 

Each of the classes mentioned in this section has been imple- 

mented in the CASE software and can be selected by the user 

via input flags (see Appendix B). 

3.2.1 Class I:  Upper Triangular 

The upper triangular canonical system class has an 

upper triangular system matrix.  It is attractive because the 

matrix diagonal contains the system eigenvalues and each state 

is less coupled than its forerunner until finally the last 

state is independent.  The generic form for Class I is thus 

x = 

1,1 1,2 

'2,2 

3,3 

1,12 

12,12 

x + Geu (3.2-1) 
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Note that the specification of this canonical system class 

says little about the nature of G .  The specification of G^ e e 
requires knowledge of the available control surfaces for the 

aircraft under investigation.  Furthermore, the specification 

of G  is sensitive to the nature of the specific states in the e r 

state vector.  G  for Class I was formed for the AFTI/F-16 e 
model employed in the current investigation and reflects the 

control surface configuration of the aircraft.  Hence, G  is 

Si ^2 g3 g4 g5 H g7 g8 g9 
0 0 g10 gll 0 0 0 0 0 

«12 g13 0 0 0 0 g14 g15 g16 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 g17 g18 g19 g20 0 0 0 

«21 g22 0 0 0 0 g23 0 0 

0 0 g24 g25 g26 g27 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

where the state and control vectors consist of, 

(3.2-2) 

A T 
x - (u, v, w, x, y, z, p, q, r, 0, 6, iji ] (3.2-3) 

and 

-   '6TEF' ^EF' ^C' ^ ^A' ÖHA, ^ 6SP' 6SB^ 

(3.2-4) 
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The definition of the state and control variables in Eqs. 3.2-3 

and 3.2-4 can be found in Appendix A.  The form of G , however, 

will be different if the state ordering implied by Eq. 3.2-3 

is changed. 

The state order has profound implications for the 

form of F  as well.  The upper triangular form implies sub- 

stantially different dynamics if Xi, .... x^ represent dif- 

ferent physical quantities, e.g., body axis velocities u,v,w. 

Although the free parameters of F  are adjusted such that F 

best approximates the true-linear dynamics, the closest upper 

triangular form will necessarily differ for various state order- 

ings.  Thus far, the state ordering found to produce the most 

rapid convergence to the closest canonical system is: 

A T* 
x - (u, v, w, p, q, r, x, y, z, 0, 6, IJJ]        (3.2-5) 

Hence, the final form of G is topographically different than 

that presented in Eq. 3.2-2, although mathematically equivalent 

A final item to note is that for Class 1, F contains e 
n*(n+l)/2 or 78 free parameters and G has 28 free parameters. 

Furthermore, the number of free parameters for both F„ and GQ ' r e     e 
increase if control augmentation or flexible body mode states 

are added to the state vector.  Two methods predominate in the 

selection of the canonical system classes; either additional 

diagonal parameters are added to form an n+ra dimension matrix, 

or the additional rows and columns are set to zero. 

*Appendix B discusses the state and control reordering and 
the transformation of the true linearized state and control 
matrices. 
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3.2.2  Classes II and III:  Decoupled, Two Block 
Longitudinal-Lateral 

The Two Block Longitudinal-Lateral Canonical System 

class more closely represents an approximation of aircraft 

dynamics than Class I.  The decomposition of the dynamics 

matrix into two 6x6 block diagonal matrix recognizes one of 

the common simplifications of aircraft dynamics.  In addition, 

the Class II and III control effectiveness matrices also apply 

longitudinal-lateral decoupling:  the free parameters are 

arranged such that a control deflection can affect either the 

longitudinal or lateral c'ynamic states, but not both.  The 

generic mathematical fcrr. for Classes II and III is; 

long 

0 

0 

. Flat 

x + G u -   e — (3.2-6) 

where F-, and F1   _ are 6x6 matrices with 36 free parameters long     lat 
each.  The nominal state vector constituents (i.e., ordering) 

for Eq. 3.2-6 are: 

x - (u, w, q, 6, z, x, v, p, r, (j>, I|J , y] (3.2-7) 

The control effectiveness matrix for Classes II and II is a 

13 x 9 matrix and has the generic form; 
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0 0 0 gl g2 ! 
g3 «4 «5 0 0 , 

0 0 H 0 0 
0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

Ge = 

«7 

0 

0 

g9 

0 

g10 

g8 

0 

0 
gll 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

g12 

0 

0 

0 

0 ' 0 0 0 0 

(3.2-8) 

where the 13  row represents the pitch augmentation state and 

the control vector constituents are: 

u ^ ^TEF' ^EF' 6H' ^P' ^B» 6VC' 6HA, 6FA' 6R 

(3.2-9) 

The form of G in Eq. 3.2-8 and state and the control e    M 

vector constituents defined in Eqs. 3.2-7 and 3.2-9 imply that 

the 12 free parameters of G correspond to the 12 most signif- 

icant aerudynamic coefficients for the control surfaces. For 

example, g,. can be defined as 

gc 
qs c 
m  z. 

'H 

(3.2-10) 

M,a 
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In the next section of this chapter, the numerical results 

will reveal that the form of G  in Eq. 3.2-8 produces very 

close canonical system matches for the two maneuvers investi- 

gated.  The dynamics however, still represent a departure from 

traditional dynamics.  Although longitudinal-lateral decoupling 

is present, the all nonzero nature of Fi   and F,   can produce 

a closest canonical system which is quite different than con- 

ventional linear dynamics.  The possibility that each of the 

longitudinal state derivatives can be a function of all the 

longitudinal states and similarly, each of the lateral states 

can be a function of all the lateral states is depicted by the 

symbolic block diagram in Fig. 3.2-1.  Note however, that 

Fig. 3.2-1 does not imply that all the state derivatives can 

be functions of the control forces and moments, Eq. 3.2-8 

limits those possibilities. 

Classes II and III do differ in the treatment of addi- 

tional control augmentation states.  The Class II canonical 

systems simply adds additional rows and columns that are all 

zero.  Class III provides additional free parameters in the 

u, w 

CONTROL 
FORCES 

CONTROL 
MOMENTS 

LONGITUDINAL 
DYNAMICS 

 ».. 

(M — 

P. * — LATERAL 
..      -^ 

DYNAMICS 
V 

CONTROL —^ FORCES 

CONTROL 
MOMENTS -  V 

Figure 3.2-1 Canonical System Block Diagram; 
Classes II and III 
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dyanmics matrix F  for each control augmentation (or flexible 

body mode) state.  However, in the subsequent controllability 

analysis, the additional rows and columns of the Class II ca- 

nonical system matrices must be ignored otherwise the Class II 

system would always be uncontrollable. 

What is being described is an order reduction tech- 

nique in which the canonical system, although it takes on the 

state dimensions of the full nonlinear model, is only signifi- 

cant in the fundamental twelve kinematic states.  Consequently, 

the Class III approximations for two very different aircraft, 

e.g., one with high-order stability augmentation and one with- 

out, hence with two different total number of states would have 

the same number of free parameters in the Class III approxima- 

tion.  The flying qualities criteria, e.g., relative controll- 

ability, for the two aircraft would only be computed on the 

twelve kinematic states of the respective canonical system 

matches. 

3.2.3 Class IV:  Four Block Diagonal, 
Longitudinal-Lateral 

The 4-Block Diagonal, Longitudinal-Lateral Canonical 

System contains a refinement of the Classes II and III canoni- 

cal systems.  Classes II and III were refined through t1.- re- 

moval of free parameters in F-,   and Fn    that are not physi- 

cally present.  Thus, Class IV more closely represents the 

traditional linear aircraft dynamics (e.g., Eqs. 5.13,18 to 

5.13,20 in Ref. 55).  The major advantage of the Class IV 

canonical systems is the small number of free parameters in 

the dynamics matrix; 25 when there are no free parameters for 

the augmentation states.  The generic mathematical form for 

the Class IV canonical system is 
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X x + G u —   e — (3.2-11) 

where 

and 

f1 f2 0 f. 

h     f5 f6 0 

h     f8 f9 0 

0  0  10 

(3.2-12) 

Fo = 
f10  0 

11 

(3.2-13) 

12 

16 

L13 '14 

^17  f r 
f. 19 ^o 

o  f 

f 

18 

21 

22  l23 

f 15 
0 

0 

0 

(3.2-14) 

F4 = 
24 

0 25 

(3.2-15) 
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The state constituents are defined as, 

x A [u, w, q, 6, x, z, v, p, r, $,  4», y] (3.2-16) 

The canonical control effectiveness matrix and the control 

vector constituents are identical to those for Classes II 

and III (cf., Eqs. 3.2-8 and 3.2-9). 

The symbolic diagram in Fig. 3.2-2 illustrates the 

functional dependence of the state derivatives on the other 

states and controls.  The body velocity and rotation state 

derivatives are formed by equations similar to the full force 
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Figure  3.2-2 Canonical System Block Diagram; 
Class IV 
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and moment equations of the 6-DOF dynamics (e.g., Eq. B.2-1 

and B.2-3 in Appendix B).  The euler angles and inertial posi- 

tion state derivatives also take on a functional dependence 

similar to the 6-DOF equations (e.g., Eqs. B.2-2 and B.2-4 in 

Appendix B).  As in the case of Class III, control augmentation 

states in Class IV are treated as additional free parameters 

on the diagonal of F . 

The diagonal submatrices F^ and F,   when combined with 

the canonical control matrix structure, produce a uncontroll- 

able canonical system regardless of the parameter values. 

This fact is borne out by Fig. 3.2-2 wherein it is apparent 

that the states, x, z, (J), and ijj are not affected by the con- 

trols.  Nevertheless, the Class IV canonical can be used in 

the controllability analysis when the submatrices F, and F~ 

alone are evaluated.  Thus, the longitudinal and lateral sub- 

systems formed by submatrices F, and F-^ represent the dynamics 

used in the computation of the relative controllability cri- 

terion to be presented in Section 3.3. 

3.2.4 Class V:  Fully Diagonal 

One of the most appealing canonical system classes is 

the pure diagonal system, a system characterized by a pure 

diagonal dynamics matrix.  Each mode (pole) in the Class V 

canonical system is independent and decoupled, hence repre- 

senting an ideal aircraft dynamic (from a theoretical control 

configuration viewpoint) in which every mode can be indepen- 

dently adjusted.  The generic form for the Class V canonical 

system is: 

x = 
kin 0 

aug 

x + GQ u -   e — (3.2-17) 
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where F..  is a 12x12 diagonal matrix of the kinematic states, 
K. J. It 

kin 

0 

12 

(3.2-18) 

and F   is an mxm diagonal matrix of the m control augmentation 
dUg 

states, 

aug 

n 

(3.2-19) 

The order of the twelve kinematic states within x is unimpor- 

tant because of the independence of each mode.  The control 

effectiveness matrix for Class V canonic system is as simple a 

control matrix conceivable, yet still providing controllability 

of the overall system.  The concept is to ensure that a con- 

trollable system would ensue if the diagonal parameters (and 

hence eigenvalues) of the closest Class V canonical system are 

nonzero.  Although a diagonal control effectiveness would be 

ideal, the non-square matrix for the AFTI/F-16 model (12x9 

nn 

^Ensuring that G G  is a diagonal matrix of the free parameters 

is also required. 
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without augmentation) precludes that possibility.  The generic 

form finally selected is: 

§2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

(3.2-20) 

where the state vector constituents are (as for Class I) 

x- [u, v, w, x, y, z, p, q, r, $, 9, ijj]        (3.2-21) 

and Che control vector constituents are (also as for Class I) 

,T 

(3.2-22) 

0 0 0 0 ö 0 0 §1 

0 0 g3 §4 0 0 0 0 

«5 H 0 0 0 0 §7 0 

g8 g9 0 0 0 0 0 0 

Ho Sll 0 0 0 0 0 0 

G. = 
«12 Sl3 0 0 0 0 0 0 

e 0 0 0 0 §14 §15 0 0 

0 0 0 0 0 0 §16 0 

0 0 §17 §18 0 0 0 0 

0 0 0 0 §19 §20 0 0 

0 0 0 0 0 0 §21 0 

0 0 g22 §23 0 0 0 0 

u A 1<5TEF. 
öi£F>   ^C <5R' <5FA' 6HA' 6H' 6SP' 6SB^ 

The Class V control effectiveness matrix conventionally models 

the control surfaces as pure force and moment generators (i.e., 

driving accelerations).  However, unconventional terms are in- 

cluded in which the flaps (6Tpp, oyrp) drive velocities and 
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the moment generating surfaces (6yC. öR, 6pA. ^HA^ 
a^so gen" 

erate rotation rates.  Figure 3.2-3 depicts the relationships 

of the states and state derivatives of the Class V canonical 

system. The diagram reveals why it is necessary to create non- 

physical control coefficients to drive the inertial velocity 

and Euler angle rates.  If these were not driven, the Class V 

system would always be uncontrollable, regardless of the closest 

canonical system match, hence, precluding the use of the rela- 

tive controllability measure. 

In summary the Class V, purely diagonal canonical 

system exemplies an abstract system structure almost completely 

lacking a physical basis.  However, it is easily the most trac- 

table of all the canonical system classes considered thus far, 
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Figure  3.2-3 Canonical System Block Diagram; 
Class V 

54 



with only 12 (plus noniiero augmentation) parameters in the 

dynamics matrix and 23 parameters in the control effectiveness 

matrix.  The relatively few parameters enhances the potential 

for flying qualities criteria directly based on the free param- 

eters of F .  Nevertheless, the ultimate usefulness of Class V e 
depends on its ability to match a given, true-linearized dy- 

namics matrix.  The comparative performance of the candidate 

canonical system classes in matching the true dynamics is the 

subject of the succeeding section. 

3.3   NUMERICAL RESULTS 

The numerical results presented in this section pertain 

to two large-amplitude maneuvers.  The canonical systems analy- 

sis methodology was applied to each maneuver and evaluated for: 

• Performance of the closest canonical 
system with regard to the norms ||AF|| 
and ||AG||and the perturbed trajectory, 
f(x, u + 6u, t) 

• Sensitivity of the relative controllabil- 
ity index over the trajectory and the 
correlation with the quality of canonical 
system match. 

The criterion evaluates the effectiveness of the closest canon- 

ical system and its distance from the linearized system.  The 

closest canonical system is considered a good match if the 

trajectory of x(f(x, u+6u, t)) lies within a neighborhood of 

x(f(x, u, t)) for identical initial conditions.  The relative 

controllability index is then computed and its correlation 

with the magnitudes of ||AF|| and ||AG|| and the difference in 

the true and perturbed trajectory (6x(6u)) evaluated.  The 

goal was to observe how well the relative controllability index 

gauged the canonical system approximation of the true dynamics. 
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3.3.1 Sample Maneuver Description 

The sample maneuvers which were employed in the nu- 

merical evaluation were: 

• A wind-up turn at approximately Mach .9 
and 10,000 feet altitude, evaluated for 
30 seconds 

• A rolling-reversal at Mach .9 and 
10,000 feet altitude evaluated for 
7 seconds. 

The wind-up turn was generated by commanding a normal 

acceleration, 

a = g cos y/cos 0 (3.3-1) 

which maintains a turn in the horizontal plane.  The effective 

turn rate is, 

t  =  an sin (D/vm (3.3-2) 

As v  decreases, the required angle of attack continues to 

increase:  a non-steady flight trajectory.  Graphs of signifi- 

cant variables of the first 20 seconds of the wind-up turn, 

from here on labeled maneuver I, are contained in Fig. 3.3-1. 

The angle of attack is not increasing in this trajectory be- 

cause a steady-state error in the acceleration autopilot pre- 

vents the aircraft from achieving the acceleration stipulated 

by Eq. 3.3-1.  Thus, the turn is beginning to degenerate into 

a spiral dive, the attendent increase in negative flight path 

angle reducing the normal acceleration required to maintain 

the turn. 

The second maneuver investigated. Maneuver II, is a 

rolling reversal.  At t=l second the aircraft begins a rapid 
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pull-up followed by a 360 deg roll initiated at t=1.5 sec. 

Figure 3.3-2 contains simulation traces of the rolling reversal. 

Maneuver II is a more severe nonlinear maneuver for the canon- 

ical system analysis because of the high rotational rates in- 

volved, the short duration of the roll rate pulse, and the 

excitation of the Dutch Roll mode (the lateral dynamics were 

not augmented to improve the Dutch Roll damping, hence the 

underdamped response in sideslip)." 

3.3.2 Maneuver I Canonical System Analysis 

The canonical systems analysis of Maneuver I included 

Classes III and IV.  Figures 3.3-3 and 3.3-4 contain graphs of 

the ratios ||AF||/||F|| and ||AG||/||G|| versus time.  The 

relative controllability versus time is also presented. 

The uppe* plots of both Figs. 3.3-3 and 3.3-4 contain 

curves of ehe norms of the differences between the true canoni- 

cal systems for both the F and G matrices.  Note the different 

scales for both ||AF|| and ||AG|| and that the curves for ||AG|| 

are identical in both figures.  The curves of ||AF|| and ||AGM 

are normalized by the norms of F and G to yield a curve which 

is indicative of the suitability of the match.  The bounds on 

||Ax(t)|| derived in Chapter 2 suggest that ||AF|| be as small 

as possible while the ratio ||AF||/IIF|| should be less than 

one.  The Class III canonical system match (Fig. 3.3-3) exhibits 

this property for all of trajectories except between approxi- 

mately 12 and 20 seconds.  The Class IV canonical match maintains 

a ratio just less than one throughout the maneuver. Although 

"However, both maneuvers were executed with a unity feedback 
of roll attitude in the roll channel and a three gain one- 
state acceleration autopilot in the pitch channel. 

tRecall that Classes III and IV have the same structure for the 
canonical control effectiveness matrix. 
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the two canonical system matches meet the analytical require- 

ments for generating a trajectory near the true perturbed dy- 

namics trajectory, the smaller values of the dynamics matrix 

ratio and the apparently greater sensitivity (i.e., greater 

dynamic behavior) of the Class III match suggest that the Class III 

structure is preferable to the Class IV.  The Class IV match 

exhibits a dynamic matrix ratio which is nearly constant over 

the trajectory and is close to one.  However, a careful investi- 

gation revealed that the behavior of the Class III and Class IV 

matches actually reveals that the Class IV structure is superior. 

The changes in the Class III match have been traced 

to changes in the heading angle during the wind-up turn.  As 

the aircraft changes heading (initial condition is zero degrees), 

the position state derivative x is no longer a function of u. 

Instead y becomes a function of u since the flight path becomes 

aligned with the inertial y axis as the heading approaches 

90 degrees.  However, the position state decoupling in the 

Class III structure, i.e., x and z are in the longitudinal 

block and y is in the lateral block of Eq. 3.2-6, prevents the 

y inertial position derivative from ever being a function of u. 

Hence, the Class 111 structure is only valid for small heading 

angles about 0 or ±180 degrees.  A similar problem occurs when 

there are significantly nonzero roll angles; in that case y 

should become a function of the normal body axis velocity w as 

well as the sidesJip velocity v, however, Eq. 3.2-6 precludes 

this.  This effect is much smaller than the heading angle 

dependence because w and v are small compared to u for the 

angle-of-attack magnitudes present in Maneuver I. 

The Class IV canonical system structure also mandates 

longitudinal-lateral decoupling. However, the Class IV struc- 

tures also decouples the position states completely, i.e., the 

diagonal submatrices in Eqs. 3.2-13 and 3.2-15.  Hence, the 
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parameters fin, fii, and f-/ in Eqs. 3.2-13 and 3.2-15 repre- 

sent the uncoupled modal values of the position states directly 

without dependence on u, v, or w.  Thus, when the heading angle 

approaches 90 degrees, the x position mode (fin) approaches 

zero; the velocity of the aircraft is normal to the x inertial 

axis and no growth in that state should occur.  Similarly, 

when the heading angle is near 0 degrees or 180 degrees the 

modal value of x (fin) is similar but opposite in sign; when 

t|) = 0 degrees x should be increasing but when ty  =  180 degrees, 

x should be decreasing.  Consequently, the increased dynamic 

behavior of the Class III canonical system match versus the 

Class IV match and the fact that the Class III ratio exceeds 

one during part of the maneuver indicate that the Class III is 

less suited than the Class IV structure for matching the dynam- 

ics of a wind-up turn. 

Finally, note that ||AG|| appears to be monotonically 
2 

increasing.  This can be traced to a dependence on u .  Because 

the airspeed is approaching Mach 1, the tendency of both ||AF|| 

and ||AG|| to increase for Class IV case may be due to the 

onset of transonic aerodynamics.  In general, the small value 

of the control effectiveness matrix ratio indicates an excellent 

match.  However, it must be noted that since the AFTI/F-16 

model has minimal control cross-coupling (see Eqs. A.2-11 to 

A.2-16) the canonical control matrix in Eq. 3.2-8 has a struc- 

ture almost identical to the true G matrix.  The most signifi- 

cant cross-coupling in AFTI/F-16 model is in the leading and 

trailing edge flap deflections; however. Fig. 3.3-1 reveals 

that during Maneuver I the flaps are almost always zero. 

3.3.3 Maneuver II Canonical System Analysis 

Figures 3.3-5 and 3.3-6 contain the results of the 

Maneuver II canonical systems analysis.  Once again, plots of 
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the norms of the closest canonical system and the relative 

controllability index are included.  The rolling-reversal an- 

alysis provides some distinctively different results.  First, 

| |AG| | has a large excursion during the most coupled portion 

of the maneuver, (when p, q, and r are at a maximum).  Thus 

indicating the inadequacy of the longitudinal-lateral control 

decoupling of the canonical control matrix to model the true- 

linearized control matrix. 

The dynamics matrix norms ||AF|| for both canonical 

system classes are remarkably different.  Not only are the 

magnitudes different (unlike the maneuver I analysis) but the 

Class III canonical system changes more during the trajectory. 

However, the trajectory for the rolling reversal maintains a 

near zero heading angle throughout the maneuver, thus the 

Class III does not suffer from the inadequacy just described 

in the Maneuver I analysis.  Hence, the greater dynamic behavior 

and smaller dynamics matrix ratios for the Class III match 

versus the Class IV match are welcomed.  The changes in ||AF|| 

in Fig. 3.3-5 appear to track the underdamped Dutch-roll oscil- 

lation excited in this maneuver (see Fig. 3.3-2).  Although 

the Class IV canonical system structure contains elements that 

can model the Dutch-roll mode (i.e., Eq. 3.2-14) apparently 

||AF|| is insensitive to these changes.  Hence, one finds that 

the more abstract canonical system structure (Class III) is 

more sensitive to the time-varying dynamics than the structure 

(Class IV) that more closely approximates the linearized- 

dynamic equation structure. 

The relative controllability index profiles exhibited 

in Figs. 3.3-5 and 3.3-6 reflect the ||AF|| and ||AG|| activity 

as expected.  Recall that the relative controllability index 

is a function of both ||AF(| and ||AG|| hence, although the 

Class III and Class IV system matches have distinctly different 
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dynamic matrices, the fact the canonical control matrices are 

the same softens the differences in eC .  The Class IV analysis o ^ 
does exhibit a smoother curve than the Class III analysis, the 

important difference is the average magnitude of eC .  The 

larger eC  for the Class III canonical system indicates less 

sensitivity (or vice/versa more controllability) with respect 

to the Class IV system.  Thus, the Class III canonical system 

better preserves the controllability properties of the linear- 

ized system, and thus, measures the controllability of the non- 

linear aircraft dynamics. 

3.4   CONCLUDING REMARKS 

This chapter has presented a brief suite of numerical 

results obtained through the application of the NFQ formulation 

described in Section 2.3.  Although the number of experiments 

was restricted, there is sufficient data to conclude that the 

canonical systems technique provides a multivariable, time- 

domain equivalent systems methodology.  The same questions 

that arise in the application of equivalent systems applies to 

the canonical systems based, NFQ analysis.  The most persistent 

issues are: 

• Upon what basis is a canonical (equiva- 
lent) system structure derived and which 
parameters are to be free in the matching 
process 

• What values of the matching process norms, 
e.g., |iAF|| and | |AG|| for canonical 
systems, imply a satisfactory match. 

The first issue was directly addressed in the statement of 

objectives for the NFQ formulation outlined in Section 2.A.1 
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The results obtained to date have indicated that the Class HI 

and Class IV canonical systems meet the objectives of Sec- 

tion 2.4.1. 

The second issue, the relevance of the magnitudes of 

||AF|| and ||AG||, can only be resolved through the empirical 

investigation of the ratios ||AF||/||F|| and ||AG||/||G||, the 

magnitude of the trajectory deviation ||Ax(t)|| for each maneu- 

ver, and the sensitivity of pilot opinion to these deviations. 

Although an analytical approach to this problem is discussed 

in Sections 2.1 and 2.2 where upper bounds for |jAx(t)|| as a 

function of ||AF||. ||AG||, ||F||, and ||G|| are derived, the 

magnitudes of ||Ax(t)|| observed were much smaller than the 

bounds.  The empirical results suggest that a high quality 

match is obtained, i.e., | |Ax(t)||/| |x(t) || is less than 10%, 

when ||AFM/||F|| and ||AG||/||G|| are 25% or less.  Further- 

more, this matching performance is obtained when all the eigen- 

values of both F and F have negative real parts (at each in- 

terval).  The results of the Class III and IV canonical system 

analyses reveal that the closest F  is not always completely 

stable.  However, since F contains completely decoupled sub- 

matrices, one need only apply the rule to the stable subspaces 

of the canonical system.  Hence, a subset of x(t) which in- 

cludes only the stable modes is evaluated for determining the 

quality of the canonical system match.  Note that is consistent 

with the order-reduction characteristics that one may wan: to 

enforce, e.g., when augmentation states are modeled as decoupled 

modes in the canonical system. 

A further issue which requires additional investiga- 

tion, is the reason for the poor quality of the canonical sys- 

tem match for the Class IV structure.  At this time it is 

unclear whether the relatively large magnitudes of ||AF|| and 

I|AG|| are the result of poor convergence in the optimization 
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procedure of if the values are the true minimums.  If the 

relatively large magnitudes of ||AF|| and ||AG|| are the true 

minimums then what is the cause and is it indicative of poor 

flying qualities in the modeled aircraft (a conclusion often 

drawn when equivalent systems exhibit a poor match)?  It is 

wise to recall from the Chapter 2 discussion that a zero value 

of ||AF|| need not exist because the choice of free parameters 

may preclude the possibility that F - F  =0.  However, the 

quality of the canonical system match for the Class IV systems 

did change with the maneuver, in fact it exceeded the Class III 

system performance in some portions of the wind-up turn.  This 

limited result suggests that the choice of a canonical system 

structure can be maneuver dependent, hence that it is possible 

to specify a canonical system structure that is the most sen- 

sitive to the aircraft dynamics in a specific maneuver. 

The strongest conclusion to be drawn from the results 

presented in this chapter is that the computability of the 

canonical system methodology has been demonstrated.  Thus, 

Step 3 of the NFQ formulation outlined in Section 2.3.3 has 

been satisfied.  The resulting computer software tool that 

solves the canonical system matching problem and computes the 

relative controllability index is a finished product, ready to 

be used in additional NFQ experiments. 

The numerical results in this chapter have made a 

strong case for two concepts developed in the NFQ research; 

the use of canonical system theory to provide what is in 

effect an extended equivalent system methodology and the use 

of a relative controllability measure as a flying qualities 

criterion.  However, the two concepts rely on local (linearized) 

results of nonlinear analysis and system theory.  Hence, the 

applicability of more advanced, i.e., global, nonlinear analy- 

sis and its ability to overcome the limitations encountered 
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with the NFQ formulation issues remain to be resolved.  The 

next chapter addresses these issues through an examination of 

leading techniques in nonlinear analysis.  In addition, Sec- 

tion 4.3 contains a complete description, i.e., definition, 

proof, and numerical procedure, for the relative controllability 

theorem used to supply the results presented in Section 3.3. 
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REVIEW OF RELEVANT TECHNIQUES IN 
NONLINEAR SYSTEM THEORY 

Nonlinear system theory, in this report, denotes the 

body of mathematical research applicable to systems governed 

by nonlinear ordinary differential equations.  Although re- 

sults in nonlinear system theory have been limited, the theory 

has drawn heavily from all areas of pure mathematics, e.g., 

functional analysis and differential geometry.  The present 

chapter will document the research results uncovered in a com- 

prehensive literature search for techniques applicable to fly- 

ing qualities analysis.  An overview of the literature search 

and a categorization of nonlinear systems is provided in Sec- 

tion 4.1.  Section 4.2 describes the system-theoretic concepts, 

e.g., reachability, for which significant progress has been 

made in deriving a computable test.  Section 4.3 then discusses 

the relative controllability theorem of Sastry and Desoer that 

was used to generate eC in the previous chapter.  (Since the 

following discussion is laden with numerous symbols, a glossary 

has been provided at the end of this report.) 

4.1   OVERVIEW OF NONLINEAR SYSTEMS THEORY 

This section describes the significant nonlinear sys- 

tem techniques revealed by the literature search. The presen- 

tation of this diverse material requires the categorization of 

nonlinear system theory research and the description of the 

subsets (i.e., classes) of nonlinear systems prevalent in cur- 

rent research. 
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4.1.1 Categorization of Nonlinear System Theory 

Nonlinear system theory properly encompasses an area 

of applied mathematical reserach which emphasizes the search 

for nonlinear analogues to linear system-theoretic concepts. 

Note that this description by no means includes all techniques 

associated with nonlinear analysis, nor does this definition 

include the specialities of optimal control, stability theory 

or frequency-domain nonlinear, feedback system analysis.  How- 

ever, the literature search for the NFQ program took a broad 

perspective, hence it included an examination of relevant 

techniques from nonlinear dynamics analysis, nonlinear system 

theory and modern control theory.  Consequently, a major cate- 

gorization of nonlinear system theory is by system-theoretic 

concept and related fields of study (e.g., optimal control). 

A further subtlety of nonlinear system theory is the 

dependence of specific approaches on a core set of too1.s and 

concepts from pure mathematics.  Specifically one finds that 

functional analysis, differential geometry and Lie algebra are 

especially popular in nonlinear system theory characteristically 

they produce different tests for the given system-theoretic 

concept. Thus, an additional categorization of nonlinear sys- 

tem theory is based on the primary mathematical tools employed. 

Finally, note that nonlinear systems is an extremely 

broad class of dynamic systems. Many researchers have responded 

to this unwieldy class of systems by concentrating on specific 

subsets of nonlinear systems, e.g., polynomic, which are both 

more manageable and more common in applications.  Thus, the 

third categorization of nonlinear system theory is with respect 

to the specific classes of nonlinear systems for which a par- 

ticular piece of research was derived. 

80 



In summary, there are three categorizations of non- 

linear system theory, in descending order of priority. They 

are: 

• The system-theoretic concept under in- 
vestigation, e.g., controllability, 
feedback control 

• The mathematical tools which the re- 
searcher draws upon, e.g., Volterra 
Series 

• The the class of nonlinear systems for 
which the result was derived, e.g., 
bilinear systems. 

Figure 4.1-1 summarizes the results of the nonlinear system 

theory literature search into the aforementioned categories. 

Because of the extensive amount of research concerning stabil- 

ity, feedback control and optimal control, key references for 

these areas are an extremely small sample of the available work. 

Descriptions of the system-theoretic concepts can be found in 

subsequent sections of this chapter.  A discussion of the 

classes of nonlinear system identified in Fig. 4.1-1 closes 

this section. 

4.1.2 Classes of Nonlinear Systems 

The classes of nonlinear systems tabulated in Fig. 4.1-1 

are the principal ones to which significant research has been 

devoted.  The classes are not necessarily mutually exclusive, 

^Although reachability and observability are dual properties 
in linear system theory, i.e., proving one property provides 
a proof for the other, this duality does not extend to non- 
linear systems.  For example a nonlinear system may be linear 
in control but have a nonlinear measurement equation.  Hence, 
results in reachability and observability are considered sep- 
erately in Fig. 4.1-1. 
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16, 13, 61 

50, 54, 57 

52 
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Figure 4.1-J Nonlinear System Theory Overview 

nor are most of them subsets of one another. In order of de- 

creasing generality, the classes of nonlinear systems encoun- 

tered in the literature search are: 
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Smooth Systems 

Analytic Systems 

Linear-Analytic Systems 

Polynomic Systems 

Bilinear Systems 

Factorable Systems. 

Prior to definitions of these system classes, note 

that the applicable definition depends on whether one is de- 

termining reachability or observability properties.  The clas- 

sification may be different because the state equation and 

measurement (output) equation may belong to different classes. 

For example a given nonlinear system may be described by a 

differential equation of analytic functions and yet have a 

bilinear form for the output equation.  Hence, for controlla- 

bility determination the system would be treated as an analytic 

system but for observability analysis, theorems relevant for 

bilinear systems would be used.  The reader is advised to bear 

this in mind when attempting to classify a nonlinear system. 

Smooth Systems - This is the broadest class of the 

aforementioned nonlinear systems.  The general form for smooth 

systems is: 

x(t) = f(x, u) (4.1-1) 

x(0) = x —o (4.1-2) 

and 

l(l)  = h(x) (4.1-3) 
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where ue i/^-  Rm.  xeM a C  connected manifold of dimension n 
00 00 

and f and h are C  function of their arguments.  C means that 

partial derivatives (of f and h) of all orders exist and are 

continuous.  A C manifold is a smooth manifold hence the sys- 

tem's name smooth for the system described by Eqs. 4.1-1 to 

4.1-3.  A manifold is a special entity of differential geometry 

which is beyond the scope of this report to define.  The reader 

is referred to Ref. 56, Chapter 5 for a concise definition of 

a manifold.  Note, however, that manifolds and differential 

geometry are important tools for establishing reachability, 

observability, and realization results for smooth systems, as 

well as analytic, and linear-analytic systems. 

Analytic Systems - Analytic systems have the same 

form as presented in Eqs. 4.1-1 to 4.1-3 but have ue ^fCR , 

xCM a C -connected manifold of dimension n and f and h are C 

functions of their arguments.  C1", where w is finite, means 

that all partial derivatives of order less than or equal to UJ 

exist and are continuous.  Furthermore f and h are analytic 

functions, signifying that for a value of x , ZoG ^ , R • f and 

h are analytic at a point x , u if the partial derivatives of — j r —o —o 
f and h exists not only at x , u  but at each point x, u in -— ■'—o—o r— — 
some neighborhood.  f and h are analytic in a region Q if they 

are analytic at every point in Rn, R111 (Ref. 55).  The advan- 

tage of real analytic functions is that they may be expressed 

as a convergent Taylor series in a neighborhood of each point. 

Linear-Analytic Systems - The next class of nonlinar 

systems are linear-analytic systems, which are expressed as 

•'This definition enforces the fact that the admissible controls 

do not span the entire space R , but typically only form a 

subset of R1" denoted 

84 



k  = I(x) + ^ u.(t) g^x) (4.1-4) 

i=l 

x(0) = xo (4.1-5) 

where f(x) and g(x) are analytic functions of their arguments 

x and the output equation is described by Eq. 4.1-3.  Equation 

4.1-4 is linear in the control u, hence the term linear-analytic 

The importance of linear-analytic systems stems from attempting 

to construct reachability results for analytic systems.  In 

particular Ref. 31 demonstrates that if an analytic system is 

linear in the control, hence linear-analytic, a computable 

reachability test can be derived.  Linear-analytic systems can 

also be used to model the application of linear feedback con- 

trol to a nonlinear plant. 

Polynomic Systems - Another important class of non- 

linear systems in recent research is polynomic systems.  Their 

importance stems from their occurrence in the modeling of physi- 

cal systems and in approximation techniques based on series of 

orthogonal polynomials.  Furthermore, they are very amenable to 

Volterra series representations, hence much of the work with 

polynomic systems is through the use of Volterra series.  The 

relationship with functional expansions is significant because 

of the powerful tools from functional analysis regarding the 

representation of functions with a polynomial expansion, i.e., 

the Weierstrass Approximation Theorem (see Ref. 58, Ch. 6). 

This theorem allows one to determine if a certain polynomial, 

e.g., the trigonometric functions (1, sin t, cos t, ..., 

sin nt, cos nt), can be' used to approximate an arbitrary 

function. 

The general form for polynomic systems is 

x(t) = P(x, u) (4.1-6) 
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lit)  =  h(x) (4.1-7) 

where ue!;1", x e Rn, yeRp, and P( • , •) and h(') are polynomial 

functions of their arguments.  Note that Eqs. 4.1-6 and 4.1-7 
are sufficiently general to include linear systems and bilinear 

systems.  The generality of including linear systems and being 

applicable to almost any problem through approximation has led 

researchers to develop a special field of systems theory called 

polynomic systems (e.g., Refs. 43 and 46).  In the present re- 
port, however, linear and bilinear systems are discussed sepa- 

rately from any general polynomic system theory. 

Bilinear Systems - The next class of nonlinear systems, 

bilinear, represents a subset of polynomic systems.  This is 

the most widely studied class of nonlinear systems.  The at- 

tractiveness of bilinear systems orginates in their nearly 

linear characteristics and in the applicability of bilinear 

models to physical phenomena in engineering, chemistry, biol- 

ogy, and economics (Ref. 49).  Bilinear systems are represented 

by the differential equation 

n 

x(t) = F(t) x + G(t) M + 2 Ni(t) x ui        (4.1-8) 

1=1 

where F6RnXn GG Rnxm and 

m 

^ N.U)  x ui  =   (N(t)x)   A (4.1-9) 

i=l 

a bilinear function in x and u where N(t) is a nxm matrix.  In 

addition, bilinear systems are typically assumed to possess 
linear output equations, i.e.. 
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YU) = H(t) x(t) (4.1-10) 

Consequently, bilinear systems are linear systems with the 

addition of the bilinear form (N(t)x)u.  Figure 4.1-2 contains 

a block diagram of a generic bilinear system.  A specific type 

of bilinear systems in which F and G are skew-symmetric and 

time-invariant occurs in the modeling of conservative (i.e., 

conservation of energy) systems.  Aircraft equations of motion, 

perturbed about a reference flight condition, represent a 

physical system that becomes a bilinear form with a skew sym- 

metric matrix N.  These conservative systems are said to evolve 

on spheres for any control, i.e., ||x(t)|| = ||x(o)||.  In 

Ref. 57 significant theorems regarding controllability and 

optimization of conservative bilinear systems have been de- 

rived.  Further discussion of system-theoretic results for 

bilinear systems can be found in Section 4.2. 

Figure 4.1-2   Bilinear System Block Diagram 
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Factorable Systems - The final class of nonlinear 

systems to be considered is factorable systems.  Factorable 

systems are composed of linear systems connected in parallel 

with their outputs multiplied.  The usefulness of factorable 

systems arises in the application of Volterra series, where it 

is known that systems with separable Volterra kernels may be 

expressed as finite sums of factorable systems (Ref. 41). 

Furthermore, as in the case of polynomic systems, factorable 

systems are extremely useful approximations to common nonlin- 

earities.  In Ref. 27 the authors state "over a finite time 

interval, any continuous-time system can be arbitrarily approx- 

imated by a factorable system." 

The general form for factorable systems is 

x(t) = F x(t) + G u(t) (4.1-11) 

and 
K 

X(t) = n h. x.(t) (4.1-12) 
i=l 1 ~1 

where each x. is of dimension n.; i.e., the state vector of 

each of the parallel subsystems.  However, Eq. 4.1-11 is simply 

a linear time-invariant differential equation; hence linear 

system theory can be applied for determining reachability/ 

controllability.  The output equation, Eq. 4.1-12, requires 

nonlinear theory to deduce observability/reconstructability 

and realization properties.  Furthermore, if a control design 

is desired, nonlinear theory is once again required for both 

open and closed-loop analysis.  Thus, even the apparently in- 

nocuous system of Eqs. 4.1-11 and 4.1-12 far exceeds the capa- 

bilities of linear system theory.  Finally, factorable systems 

are specific examples that reinforce the fact that reachability 

and observability are not duals of one another for certain 

classes of nonlinear systems. 
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The nonlinear system classes that are described in 

this subsection: smooth, analytic, linear-analytic, polynomic, 

bilinear, and factorable are by no means an exhaustive list of 

either possible classes of nonlinear systems or of the special 

nonlinear systems that arise in applications.  One obvious 

omission has been nonlinear differential equations of mathe- 

matical physics which have been the subject of intense investi- 

gation, e.g., the Van der Pol and Rayleigh equations.  The 

existence of so many classes of nonlinear systems and so much 

specialized investigation may lead one to conclude that the 

pursuit of global nonlinear system :heory is futile.  Never- 

theless specific works, e.g., Ref. 16 stressing a qualitive 

approach to nonlinear systems and Ref. 18 emphasizing the 

Volterra/Wiener (frequency-domain) approach, provide suffi- 

ciently general results that can be applied to diverse systems, 

The specialization occurs when one uses the physics, chemistry 

or empirical data in a problem to simplify the differential 

equations or to generate special theorems. A classic example 

is the linearization about steady-trimmed flight of the non- 

linear equations of motion of an air vehicle. 

In the NFQ research, the crucial issues regarding the 

usefulness of a particular technique from nonlinear system 

theory are: 

• The applicability of the nonlinear system- 
theoretic concept, e.g., realization, to 
the aircraft equations of motion with 
the  flexibility to provide flying 
qualities criteria 

• The capability to approximate the aircraft 
equations of motions by recasting into 
a particular class of nonlinear systems. 

The following sections (A.2 and 4.3) address the first topic 

by describing what are considered to be the most promising 
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techniques in reachability, observability, realization, stabil- 

ity theory, nonlinear feedback, and optimal control; the system- 

theoretic concepts outlined in Fig. 4.1-1. 

4.2    NONLINEAR REACHABILITY, OBSERVABILITY, AND REALIZATION 

The system-theoretic concepts of:  reachability/con- 

trollability, observability/reconstructability and realization 

are defined in this section.  Significant theorems for deter- 

mining these properties for a given nonlinear system are docu- 

mented as well.  The material presented in this section is 

emphasized throughout the remainder of this report because of 

its applicability to flying qualities analysis.  The system- 

theoretic concepts take on the following meanings when applied 

to aircraft: 

• Reachability/controllability of the air- 
craft system from pilot inputs quantifies 
the map of pilot inputs to possible states 
of the aircraft 

• Observability/reconstructability permits 
the evaluation of which modes can be 
perceived by the pilot or  can be se-sed 
by the flight instruments 

• Realization theory is essential for 
reconstructing flying qualities, e.g., 
canonical systems, models of the aircraft 
from flight test data. 

In discussing these concepts, theorems will be pre- 

sented without proof,' with an emphasis on theorems that provide 

tests and are apparently computable; i.e., are amenable to con- 

ventional numerical algorithms.  However, the determination of 

^The reader is reminded to consult subsection 4.1.2 when the- 
orems are restricted to a specific class of nonlinear systems. 
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the applicability of these concepts to nonlinear flying quali- 

ties analysis has led to the selection of a particular control- 

lability theorem which is desciibed in detail in Section 4.3. 

4.2.1  Nonlinear Reachability/Controllability 

The majority of contributions to nonlinar reachability/ 

controllability have been derived with the aid of functional 

analysis or differential geometry.  Although the methods differ, 

the aim of all approaches is to state a theorem with which a 

system can be determined to be reachable or controllable. 

Prior to examining these theorems it is useful to review 

reachability/controllability for linear systems: 

•   Definition -- REACHABILITY -- Given the 
linear system 

i=F^ + GH   and ^-2-1) 

^ = H x (4.2-2) 

for x G R , Q(x ) equals the set of —o       —o  n 

reachable states:  xGfi(x ) if there is —   —o 
an input u(t), t 1 t £ t, such that 

u(t) 
('V to) —> ^1' tl) 

i.e., u(t) forces the system from 
the initial state (x , t ) to the —o  o 
final state (x, , t, ) e Q ^0)' 

However, the statment that a system is simply reach- 

able is of little practical value; something must be stated 

concerning the reachable set Q(x ).  Hence, the concept of 

complete reachability. 
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•   Definition -- A system is completely 
reachable if the set of reachable states 

Q(x ) = Rn V x , i.e., the set of solu- —o        —o 
tions to Eq. 4.2-2 includes all possible 
values of x for any value of x . 

The concept of controllability is a corollary of 

reachability. 

•   Definition -- A system is completely 
controllable if x- = 0 e Q(x ) V x -   -    -o   -o, 
i.e., the set of reachable states in- 
cludes the zero vector. 

For continuous-time systems completely reachable <=> 

completely controllable.  Hence, the separation of controlla- 

bility and reachability is only of importance for systems de- 

scribed by finite difference equations, i.e., discrete-time 

systems.  (The critical issue is the invertibility of the 

discrete-time dynamics matrix.  In the NFQ program the only 

use of discrete-time systems is in forming discrete equiva- 

lents of continuous representations of the aircraft dynamics 

(see Subsection 4.3.3) hence the discrete equivalent dynamics 

matrix is always invertible because it is the transition matrix 

ot the continuous system.) 

In the present discussion of nonlinear systems reach- 

ability is the only concept of interest, primarily because the 

x = 0 solution of nonlinear differential equation is not neces- 

sarily an equilibrium point as it is for linear systems.  How- 

ever, when linear time-varying systems are discussed, especially 

in Section 4.3, reachability and controllability will be used 

interchangeably. 

The definition of reachability for linear systems must 

also be changed if it is to be a useful concept for nonlinear 
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systems. A particularly troubling aspect of the previous def- 

inition of reachability is that it may take an infinite amount 

of time or an infinite distance (i.e., ||Ax||) to reach a par- 
JL 

ticular reachable state."  Consequently, it is more practical 

to define concepts of locally reachable and weakly reachable. 

Consider the general nonlinear system, 

x(t) = F(x, u) (4.2-3) 

(0) 

Z(t) = h(x) (4.2-4) 

where uGVCRin, x e M a C* - connected manifold of dimension n, 

f and h are C  functions of their arguments.  (Note, the C 

requirement signifies that (9) is a smooth system as discussed 

in Section 4.1.)  The global definition of reachability is 

equivalent to the linear-system reachability definition pre- 

sented earlier with the exception that each reachable state 

is contained on M, X"S M and the trajectory x to x* remains in 

M: x(t)eM, 0 £ t < T.  The definition of local reachability is 

•   Definition -- LOCAL REACHABILITY -- The 
system (9) is locally reachable at x 

for every neighborhood 0 (x ) if fUx) is 

also a neighborhood of x with the tra- 

jectory from x to ft(x )nO (x ) lying 

entirely within 0 (x ).  The system (9) 

is locally reachable if it is locally 
reachable for every x € M. 

Global reachability and local reachability are not symmetric, 

i.e., X" may be reachable from x but not vice versa. 

"Hence the impetus for the relative controllability theorems 
discussed in Section 4.3. 
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Hence one can define an alternative concept which will be called 

weak reachability, 

Definition -- WEAK REACHABILITY -- (Ref. 19) 
Two states x* and x are weakly reachable 
from each other if and only if there 

o 
X' 

1       k 
x  such that 

x  = x and either x  is reach- 

exist states x , x , 

able from x   or x   is reachable from 

x , i = 1,2, ...k.  The system (6) is 
weakly reachable if every xGM is weakly 
reachable. 

The concept of locally-weakly-reachable can also be defined as 

a system that meets both conditions of locally and weakly 

reachable. 

The rationale for this variety of reachability con- 

cepts is that the most practical nonlinear reachability theo- 

rems, i.e., those which admit an algebraic test, have been de- 

rived for locally weakly reachable systems.  Prior to stating 

the reachability results one additional concept must be defined; 

Definition -- Let £(x),  g(x) be two C 
vector fields on M.  Then the Jacobi 
bracket of p and q is 

P.^)=(||)P-(||) x (4.2-5) 

If we then define a set of vector fields f , the set of vectors o 
generated by f(x,') i.e., for a constant control, then the 

elements of F are linear combinations of the form 

[f1. f2, f3 If1. f1+L] 
i + 1 (4.2-6) 
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where f1(x) = f(x,u1).  The reachability theorem for C  (smooth) 

systems is:  A system (6) is said to be locally weakly reach- 

able at x  if it satisfies the reachability rank condition at -o J 

x , i.e., the dimension of F(x ) is n for every x M.  A proof 

of this theorem can be found on p. 730 of Ref. 27.  In addition, 

Ref. 41 provides a reachability theorem for analytic systems, 

hence a strengthening of the foregoing theorem, 

•   THEOREM -- REACHABILITY OF ANALYTIC 
SYSTEMS -- if (6) is analytic, then (6) 
is weakly reachable if and only if it is 
locally weakly reachable and if and only 
if the reachability rank condition is 
satisfied. 

The reachability theorem for analytic systems is based on an 

algebraic test like the reachability theorems for linear sys- 

tems.  However, unlike the linear tests which require a finite 

matrix, the sequence of Lie brackets in Eq. 4.2-6 can be com- 

puted indefinitely until the set of vectors spans the vector 

space of fCx.u1).  Further qualification of the nature of the 

vector fields f , specifically, requiring that they be "in- 

volutive" (see Ref. 19, p. 310), permits the restatement of 

the reachability rank condition such that the Lie brackets in 

Eq. 4.2-6 terminate in a finite number of terms.  Linear- 

analytic systems especially lend themselves to a tractable 

algebraic test which is a simplification of the reachability 

rank condition. 

This brief discussion of nonlinear reachability/ 

controllability emphasizes the results obtained with the tools 

of differential geometry and Lie algebra.  Significant theorems 

have also been derived with the aid of functional analysis, 

especially fixed-point theorems (Refs. 22-26).  Although the 

theorems are meaningful and practical, the theorem that Sec- 

tion 4.3 describes is a sufficient example.  The reader is 
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referred to the discussion of the relative controllability 

theorem of Sastry and Desoer in Section 4.3 for an exposition 

of the application of functional analysis to nonlinear con- 

trollability. 

One additional area to review is the reachability of 

polynomic systems. Recall the definition of polynomic systems 

given in Section 4.1 (Eqs. 4.1-6 and 4.1-7) 

x(t) = f(x) + g(x) u(t) (4.2-7) 

where f and g are vector fields having components which are 

polynomials in the entries of x.  Because f and g are  polyno- 

mial maps, concepts of algebraic geometry are used extensively. 

Prior to stating the reachability theorem, a few preliminary 

concepts are reviewed.  First on algebraic set in kn is the 

zero set for a collection of polynomials in k[s].  If Q c k(s) 

then the natural algebraic set 

V(Q) = Uekn : f(x) = 0  for all feQ] 

Furthermore, if fek[s], xGkn, the differential of f at x is 

the linear function d  f : kn -*■ k given by 

n 
dx f<v) = EH <x) vi (4-2-8) 

i=l 

The Lie derivative of f with respect to F, Lp(f(s)) is given by 

n 

LF(f(s)) - ds f(F(s)) = 23 HT (s) Fi(s)       (4.2-9) 
1=1  1 

Finally, the set I(Q;P) A the smallest polyncmial ideal in 

k(s] containing Q and closed under Lie differentiation with 
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respect to elements of P.  The foregoing definitions and con- 

cepts are key elements of the following theorem: 

•   THEOREM -- POLYNOMIC SYSTEM REACHABILITY -- 

Let V be an algebraic set in k .  If 
Q(x )CV for each x GV then I(v(v); 

{f,g]) = v(v).  If for any ideal v de- 
fining V we have I(v; {f,g}) = v then 
Q(x )CV for each x CV. o - o — 

This theorem, although extremely abstract does provide a basis 

foi testing whether or not a given algebraic set contains points 

reachable from x  and also provides a means for constructing 

points reachable from x .  Specific examples of such a procedure 

can be found in Refs. 59 and 60. 

In this subsection, a brief outline of reachability 

theorems for smooth, analytic, linear-analytic, and polynomic 

systems has been presented.  Although not comprehensive, the 

discussion should impress upon the reader both the advanced 

state and difficulty of nonlinear system theory.  What is 

apparent from this overview is that the computation of these 

tests can be an enormous task.  The reachability theorem for 

analytic systems presents the difficulties of computing the 

partial derivatives necessary for the Lie brackets.  On the 

other hand the reachability theorem for polynomic systems 

requires finding the zeros of the dynamical and control poly- 

nomial and then computing the ideal of that set.  A general 

numerical procedure for either of these procedures is far off 

indeed, hence, it may be best to pursue a version of these 

theorems for a specific system, e.g., the equations of motion 

for an aircraft.  In other words it may be ber^t to derive con- 

trollability tests for the nonlinear aircraft equations of 

motion rather than try to apply a specialization of the theo- 

rems just described. 
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h.2.2    Nonlinear Observability/Reconstructability 

Nonlinear observability/reconstructability shares many 

of the problems associated with reachability/controllability. 

As in the case of nonlinear reachability, concepts of weak ob- 

servability, local observability and locally weak reachability 

are necessary to avoid the shortcomings of global observability 

theorems. 

4.3   RELATIVE (ROBUSTNESS OF) CONTROLLABILITY FOR 
NONLINEAR SYSTEMS 

The survey of research in nonlinear controllability/ 

observability presented in Section 4.2 emphasized existence 

and sufficient conditions for controllability in various types 

of nonlinear systems.  Characteristically these theorems do 

not lend themselves to constructive proofs, hence explicit 

numerical techniques for testing the controllability of a non- 

linear system are not obvious.  One notable piece of research, 

however, has succeeded in generating a constructive proof which 

can be solved numerically.  The nonlinear controllability/ 

observabi11" ty results of Sastry and Desoer (Refs. 25 and 26), 

have led to a constructive proof which also provides bounds on 

the controllability of a perturbed nonlinear system, hence 

providing a measure of the relative (or robustness of) con- 

trollability for the linear time-varying component of the non- 

linear differential equation.  The computability of the con- 

trollability measure is beneficial to the development of non- 

linear flying qualities criteria based on the system-theoretic 

concept of controllability.  This section concerns itself with 

the relative controllability theorem" and overview of its proof, 

rThe relative observability theorem will not be discussed, how- 
ever, it is an equally significant result which can be of great 
value in flight control design problems. 
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An exposition on the use of relative controllability in flying 

qualities analysis is contained in Chapter 2. 

4.3.1 Theorem Statement 

In the review of controllability for linear systems 

presented in Appendix C, it is clear that the binary test, 

i.e., invertibility of the Grammian, can be expanded to pro- 

vide a measure of the system controllability.  Recall the 

definition of the Grammian 

.t0+T 

W(to>to+T) = I '   <J>T(t0.i) G
T(i) G(i)*(t0,T)dT I 

o (4.3-1) 

The Grammian is a nxn matrix with n eigenvalues A., 

hence we can define a reachability condition number (reminis- 

cent of the condition number of a matrix in numerical analysis) 

as (Refs. 25 and 26) 

XR 
=
 ^ ^•3-2) 

where 

L  =  sup sup J^max(W[t:o'   to+t]) (4.3-3) L      toe R+       t elO.TM 

and 

A 
toGK+ 

The maximum and minimum eigenvalues of the grammian qualita- 

tively are a natural basis for a controllability measure because 

they gauge the rank of the matrix.  Hence, if the system is 
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uncontrollable k   ■     (and thus K-)  will be 0, causing the reach- ni i n o 
ability condition to be undefined.  If the system is controll- 

able but may take nearly an infinite time to reach the desired 

state (especially a problem of global controllability theorems) 

the reachability condition number will be very large (\c. << 1). 

Furthermore, note that the supremum of the square root of A 

on an interval and infinum of the square root of A ■  are valid M mm 
Ly  norms of the controllability grammian, hence, all the prop- 
erties of a norm apply to \ and K   .   . KK J max     mm 

When confronted with a nonlinear system of the form 

x = f(x,u,t) (4.3-5) 

which can be decomposed into 

x = A(t) x(t) + B(t) u(t) + h(x,u,t) (4.3-6) 

where A(t), B(t) are a completely controllable pair and h(x,u,t) 

is globally Lipschitz continuous with 

sup              |h(x,u,t)| = k < «.        (4.3-7) 
xGRn)uG Rm,te R+     ^      0 

the theorem of Sastry and Desoer permits the direct evaluation 

of the permissible function h(x,u,t) such that the overall 

differential Eq. 4.3-5 or Eq. 4.3-6 remains controllable. 

Differential equations such as Eq. 4.3-6 may arise in two 

situations: problems where a linear time-varying system is 

perturbed by nonlinear dynamics; or in the case where the 

■^(x.u.t) can also be viewed as the higher order terms of a 
Taylor series expansion on f(x,u,t). 

tSee Ref. 58 for definition of Lipschitz condition and Lipschitz 
continuity. 
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original nonlinear differential equation, e.g., Eq. 4.3-5, may 

be naturally decomposed into a linear plus nonlinear part like 

Eq. 4.3-6.  Bilinear systems (sue  Subsection 4.1.2) are a spe- 

cific example of a nonlinear system which is composed of linear 

and nonlinear parts. 

The robustness of controllability results of Sastry 

and Desoer exist as a collection of theorems for various cases. 

This discussion will describe the two most useful theorems for 

NFQ analysis.  The first theorem states that if the linear 

time-varying portion of Eq. 4.3-6 is bounded, i.e., ||A(')II, 

||B(-)II, and ||C(')|| bounded on R+ and is strongly completely 

controllable, i.e., it is completely controllable in the sense 

of the definition in Appendix C where strongly also implies, 

W[to, to+T] > \2 I (4.3-8) 

where I is an identity matrix of the same dimension as W, then 

the perturbed system represented by Eqs. 4.3-6 and 4.3-7 is 

completely controllable on the same interval, [t , t +T] 

(Theorem V.l, p. 15, Ref. 26). 

The next theorem of interest states an explicit formula 

for computing the interval on which the perturbed system remains 

controllable when the nonlinear perturbation does not satisfy 

Eq. 4.3-7, i.e., is unbounded.  The case of unbounded nonlinear 

perturbation arises more often; Eq. 4.3-7 is extremely restric- 

tive.  For example, the nonlinear one-dimensional system, 

2 x = ax + bu + x 

2 
contains a nonlinear perturbation h(x) = x  which does not 

satisfy Eq. 4.3-7.  In general, Eq. 4.3-7 describes functions 

like sinusoids, exponentials, and inverses of polynomials. 
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Consequently, the second theorem begins with the sys- 

tem defined by 

x = A(t) x + B(t) u + £ h(x,u,t) (4.3-9) 

where h is a Lipschitz continuous vector function satisfying 

h(0n. 0m. t) = 0n 
v t6R+ (4.3-10) 

(i.e., it has a fixed point) and 

|h(x,u,t) - h(y,v,t)| < C0|u-v| + C0|x-xl       (4.3-11) 

for some C 6R+,  Furthermore the lir.ear portion Oi Eq. 4.3-9 

is required to be bounded and strongly completely controllable 

as in the case of the previous theorem.  Given the aforemen- 

tioned conditions, Eq. 4.3-9 is completely controllable on 

[t ,t +T] for an interval of width e, i.e., ee(-e , e ] 

where 

^ XH 2 C 
0 M r* {l + y(G) 

• AÖ1 A."1 sup  sup   l*(t +T,t +x)|. }    (4.3-12)* 
b  L toeR+ te(o,T)   o   o   i^ 

where xr» A,, X^,   and C have been defined in Eqs. 4.3-2, 4.3-3, 

4.3-4 and 4.3-11, M is the intrinsic drift factor. 

M A sup  sup     Jk (WT[t , t+i]) (4.3-13) 
" toeR+ TGfO,Tj   max  i o  o 

«'Equation 4,3-12 differs from the theorem as stated in Refs. 25 
and 26 due to typographical errors in those references.  The 
correct form is in Eq. 4.3-12 which has been confirmed with 
S.S. Sastry. 
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where W, is the intrinsic Grammian, the Grammian of Eq. 4.3-1 

when G(t) = I.  Finally, the term Y(G) is, 

Y(G) ^ sup   |G(t)|. < *        (4.3-14) 
teR+       

1 

Note in the previous equations three types of norms have been 

used: 

• |•| symbolizes the Euclidean norm in R 

• I I*I I symbolizes the I^ norm on (t , t +T] 

• ||- symbolizes the operator norm induced 

on a linear map from L^ (It , t +T]) to 

Rn by the previous two norms. 

Also note n can be the dimension of the state or control space, 

n or m. 

Equation 4.3-12 is a strong result that permits ex- 

plicit computation of the controllability of a nonlinear system, 

hence it is a constructive theorem quite unlike the controlla- 

bility theorems presented in Section 4.2.  However, bear in 

mind that the properties of h(x,u,t) summarized in Eqs. 4.3-10 

and 4.3-li are fairly restrictive and furthermore the original 

nonlinear differential equation (Eq. 4.3-5) must be decomposa- 

ble into Eq. 4.3-9 where the. linear part is strongly completely 

controllable.  If the h(x,u,t) part of a system does not meet 

the conditions of this theorem then the test in Eq. 4.3-12 

cannot be used and one must resort to the global nonlinear 

reachability theorems discussed in Section 4.2. 

Equation 4.3-9, however, can be viewed as the original 

problem statement, rather than decomposition of an original 

nonlinear equation.  When viewed in this way, Eq. 4.3-12 permits 
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the computation of the maximum perturbation such that the per- 

turbed system maintains complete controllability.  When this 

concept is extended to classical flying qualities analysis 

(i.e., equivalent systems), Eq. 4.3-12 creates the basis of a 

canonical system theory based on matching the controllability 

properties of the true and ideal (canonical, equivalent) system. 

This concept of controllability as an essential property of 

flying qualities analysis is more fully expounded in Chapter 2. 

In summary, the results of Sastry and Desoer produce 

two main theorems.  The first states conditions for which a 

nonlinear system decomposable into bounded linear and nonlinear 

parts is controllable.  The second theorem yields a formula, 

Eq. 4.3-12, for computing the magnitude of a nonlinear pertur- 

bation applied to a linear time-varying system, such that the 

composite nonlinear differential Eq. 4.3-9 remains completely 

controllable.  Hence, the parameter e in Eq. 4.3-9 can be 

viewed as a controllability measure, or equivalently Eq. 4.3-12 

is a relative controllability statement. 

4.3.2 Outline of Proof 

Proof of the two theorems stated in Subsection 4.3.1 

requires the use of fixed-point theorems from nonlinear analy- 

sis.   Specifically Sastry employs a solvability theorem for 

operator equations with a quasibounded nonlinearity developed 

by Granas in Ref. 65.  The mathematical details are much too 

extensive to be presented in this report.  References 64 and 65 

should be consulted; also Section IV of Ref. 26 gives a de- 

tailed account of how Granas' theorem is used.  Nevertheless, 

it is prudent to define the term quasinorm. 

Reference 64 is an excellent survey and tutorial on fixed 
point theorems. 
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Given Banach spaces, .i^fand ,y with norms I • 1^. and 1*1« 

and a mapping, F, from ^^ to^y, F is said to be quasibounded if 

the number 

|F(x)|y 
p(F) 4 inf  sup   —r-p-^- (4.3-15) 

0<p<»   |x| ^p   ' '* 

is finite. p is the quasinorm of F. Note that Eq. 4.3-15 is 

the definition of an induced norm of a mapping, furthermore if 

F is a linear map it is quasibounded and its quasinorm is the 

usual induced norm (for the finite-dimensional problems being 

considered this is the I^ norm). Granas' theorem is then: 

given F: x "> X a continuous, quasibounded, compact map on the 

Banach space x and if 

p(F) < 1 (4.3-16) 

then the equation 

x + F(x) = y (4.3-17) 

has at least one solution for every y x-  The proof of this 

theorem can be found in Ref. 11 Section IV. 

The outline of the proof of Theorem 4.3.1 follows 

from the use of Granas' solvability theorem. Sastry demon- 

strates that given two systems 

x1(t) = A(t) x1 (t) + B(t) u(t)      - (4.3-18) 

x^^) = xo (4.3-19) 

the completely controllable linear equation and 

x2(t) = A(t) x2(t) + B(t) u(t) + h(x2(t), u(t),t)   (4.3-20) 
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x2(t0) = x0 (4.3-21) 

the perturbed nonlinear differential equation, then the solu- 

tions of Eq. 4.3-18 and 4.3-20 are: 

xl(t:o+T) =^u) + ^V1' ^^o (4.3-22) 

and 

x2(to+T) = i^(u) + *(to+T, to)xo + Nx (u)      (4.3-23) 
o 

where  D(U) is the reachability map of the linear system, viz. R 

/ 

t +T o 
R(u) = j    *(t0+T,t) B(t) u(t)dt (4.3-24) 

and N  is the contribution of the nonlinear perturbation, viz. 
xo 

rV1 

Nx (u) = j    <D(x0+T,i) h(x(x),u(T),T)dT      (4.3-25) 

Both follow from the variation of constants formula for the 

solution of a system of first-order linear differential equa- 

tions (See Ref. 15, Chapter 1). 

The remaining part of the proof demonstrates that the 

function (JZp + N  ) is onto for each x e Pn, using Granas' 
K   x0 o 

solvability theorem.  Thus it is proved that the perturbed dif- 

ferential equation is completely controllable when the linear 

system is completely controllable.  Another perspective on the 

proof is that Granas' theorem tells us that Eq. 4.3-23 can be 

solved for the u necessary to drive Eq. 4.3-20 from ^(t ) to 
X2(T); therefore Eq. 4.3-20 is completely controllable. 
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The proof of Theorem 4.3.2 (Eq. 4.3-12) requires use 

of separate theorems for independent perturbations of the state 

and control variables.  The starting point of this proof is 

once again the statement of the linear and perturbed nonlinear 

equations, i.e., Eq. 4.3-18 and 4.3-20 modified to yield 

Ax = A(t) Ax + £ h(x2,u,t) (4.3-26) 

Ax(to) = 0n (4.3-27) 

Subsequently Sastry proves that N  , as stated in the previous 
xo 

proof, can be found to have a quasinorm 

p(Nx ) = 2 e Co M T^ {\L + Y(B)A"- 

sup  sup   |f(t +T, t +T)|.]       (4.3-28) 
toeR+ TE[O,T]   

0    0   1 

Thus, rewriting Eq. 4.3-28 in terms of e provides the main 

formula of Theorem 4.3.2, Eq. 4.3-12.  Once again the reader 

is referred to Ref. 26 for the complete proof.  Note, however, 

that Refs. 25 and 26 contain typographical errors in the state- 

ment of Eq. 4.3-12 and in the exposition of the proof. 

4.3.3  Computation of the Relative Controllability Index 

The application of the relative controllability theorem 

requires the computation of the controllability index defined 

in Eq. 4.3-12 for the system under consideration.  Specifically 

this requires computation of the Grammian (Eq. 4.3-1), the 

reachability condition number (Eqs. 4.3-3 and 4.3-4), the 

transition matrix <t>(t ,t +T) (Eq. 4.3-12), and the induced 

norms of G(t) and «(t ,t +T). 
o  o 
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For a general linear time-varying system computation 
of the transition matrix requires the use of the Peano-Baker 

JL 

series,  i.e., 

ft (h 
*(t,t0) = I + I  do1A(o1) + J  da1A(o1) 

^ ^ 

f. da2 A(a2) +   (4.3-29^ 
t o 

which is difficult to solve numerically.  However, if one 

assumes that the time-varying nature of F(t) can be repre- 

sented by a matrix of piecewise constant functions, then at 

any specific time the F matrix is constant, i.e., 

Fto     ^ i * < h 

Fl- t,  < t <  to 
F(t) = < h      i _     Z (4.3-30) 

Vi i' < tn 

across any interval the solution to the linear time-varying 
equation is 

x(t) = «(^t.) ^(t.)    t. < t < ti+1 (4.3-31) 

•'See Ref, 15 for a discussion of the Peano-Baker series and 
its use for solving a n-th order system of linear differential 
equations with time-varying coefficients. 
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where 

4>(t,t,) = E 
k=0 

i (4.3-32) 

The advantage of this piecewise time-invariant representation 

is that highly accurate and reliable algorithms are available 

for computing the matrix series in Eq. 4.3-32.  Furthermore, 

the semi-group property of the transition matrix can be ex- 

ploited to yield the transition matrix for an entire interval, 

namely, 

n- 

^w=n*(ti+i'ti) 
i=0 

(4.3-33) 

Consequently, the numerical computation of the transition ma- 

trix in the relative controllability formula is easily accom- 

plished if the dynamics are assumed to be linear, piecewise 

time-invariant.  Furthermore, the linear, piecewise time- 

invariant matrices can be readily obtained from the nonlinear 

6-DOF dynamics through linearization at regular intervals.  In 

other words matrices are obtained at regular intervals from a 

simulation trajectory of 

x = f(x,u,t) (4.3-34) 

The linear, piecewise time-invariant matrices are 

t. 
i 

3f(x,u,t) 

äx (4.3-35) 
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and 

3f(x,u,t) 
Gf = -^r1  (4.3-36) 

i 

The 6-DOF simulation described in Appendix A implements this 

feature. 

Once the computational challenge of computing <p(t,t ) 

is overcome, the remaining elements of Eq. 4.3-12 are easy to 

solve.  The key assumption at this point is to assume that the 

collection of linear, piecewise time-invariant transition ma- 

trices represents the dynamics of a discrete equivalent to the 

original continuous system. Hence we can define a 

x(k t      ) = «(k, ,kf )x(kt  ) + r(k, ,k,  )u(kf ) (4.3-37) 

where r(')) the discrete equivalent control matrix, is defined 

as 

fti+1 r(kf ^  )=      *(t.,t.+i) G(T)dT        (4.3-38) 
ci ti+l   J      1 1 

Note tlie indices of the discrete system in Eq. 4.3-37 are de- 

fined to correspond with the regular intervals of time at which 

the linear, piecewise time-invariant system is computed. 

The impact of the discrete representation in Eqs. 4.3-37 

and 4.3-38, is that one can now use the definition of the dis- 

crete Grammian, in place of the continuous Crammian defined in 

Eq. 4.3-1.  The discrete Grammian is defined as 
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k -1 

w(k. .k. ) = ^ <D(k. ,£+i)r(£) rTU) *T(k. ,£+i) 
tf ^    A-r    tf tf f 

£=k 
0 (4.3-39) 

This equation is easily computed from the collection of trans- 

ition matrices, which is a more tractable numerical problem 

than the integral of Eq. 4.3-1. 

Standard eigenanalysis algorithms are then used to 

compute the eigenvalues of W(t,t ) which provide \r   (Eq. 4.3-3) 

As (Eq. 4.3-4), xR (Eq. 4.3-2) and M (Eq- 4.3-13).  The re- 

maining elements, Y(G) (Eq. 4.3-14) and the induced norm of 

^(t , t +T) are computed in accordance with the definition of 

the L2 norm, hence 

i: K(ti+1,ri)li = max ^k(<t»(ti+1,ti) cKt^.t.))  (4.3-40) 

and 

r> |G(t.)|. = max VA. (G(t.)  G(t.)) (4.3-41) 
1  1   k   K   1     1 

where * indicates the conjugate transpose.  The right-hand 

sides of Eqs. 4.3-40 and 4.3-41 are equivalent to the maximum 

singular value of the matrix under consideration.  Fortunately, 

reliable algorithms for numerically computing the singular 

values of a matrix are readily available. 

Finally the supremum, or least u^per bound, for the 

sequence of Eqs. 4.3-40 and 4.3-41 over the interval [0,T] is 

numerically computed as 
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sup   |<t>(t+T, t +i)|  = max I !♦( t .+1 ,t.) | |,  +A 
TG[0,T]   

0    0   1   i      i+i i  L2 
(A.3-A2) 

and 

sup   |G(T)|. = max ||G(t.)llr  ^ A (A.3-43) 
TGfO.T]     1   i      i  L2 

where A is the smallest number within the floating-point repre- 

sentation of the computer in use. 

The numerical computations outlined in this section 

are feasible when the assumption of linear, piecewise time- 

invariant dynamics is made.  This assumption is compatible 

with the computation of time-varying state variable descriptions 

of nonlinear 6-DOF dynamics through numerical linearization 

within a numerical integration of the nonlinear differential 

equations.  Consequently although the numerical computation of 

the relative controllability for a continuously time-varying 

system with matrices F(t) and G(t) may be achievable, the 

formidable task of analytically obtaining F(t) and G(t) from 

the nonlinear dynamics would remain to be solved. 

The numerical procedures presented in this section 

have been implemented in the Canonical System Evaluator (CASE) 

software package.  A thorough description of the software can 

be found in Appendix B of this report. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1   SUMMARY 

This report of the Nonlinear Flying Qualities for 

Large Amplitude Maneuvers Program documents a research and 

development effort to extend conventional flying qualities 

procedures and specifications to combat maneuvers. An applied 

analysis methodology was developed, entitled canonical systems 

theory, which was found to sufficiently include the additional 

nathematical structure required to handle large amplitude combat 

maneuvers.  The canonical systems methodology surpasses the 

conventional flying qualities, equivalent systems methodology, 

through the use of time-varying, multivariable state-space 

mathematical forms.  The canonical systems theory met the re- 

search goals of the program because:  it is of sufficient gen- 

erality tc handle nonlinear maneuvers yet remain compatible 

with the current equivalent systems methodology, admits a tract- 

able numerical solution procedure, and can be applied in a 

b-DOF simulation environment of the aircraft under investigation 

In keeping with the goal of developing a useable analy- 

sis tool, a complete numerical solution of the canonical system 

methodology and computation of the intrinsic flying qualities 

criteria was developed.  The tool was then applied to a 6-DOF 

aeropropulsive model of the AFTI/F-16 aircraft.  The objective 

of the AFTI/F-16 canonical systems analysis was not to evaluate 

the specific AFTI/F-16 performance, but to evaluate the perform- 

ance of the canonical systems based methodology as a flying 

qualities analysis procedure, especially for combat maneuvers. 
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Two maneuvers were extensively investigated:  a roll- 

ing reversal and a wind-up turn.  The data computed in the 

sample results and presented in this reprot include, the norm 

of the canonical system match, the relative controllability 

index, both over the trajectory, and a perturbation simulation 

of the canonical system. 

Although the analysis methodology applied in the NFQ 

derives from local nonlinear system theory (i.e., almost linear) 

a literature search of nonlinear analysis and system theory 

was performed.  One result of which was the relative control- 

lability theorem subsequently applied in the canonical-system- 

based analysis.  However, the general observations of the lit- 

erature search have been reported to allow the reader to appre- 

ciate the breadth and depth of nonlinear system theory and the 

multitude of directions that can be pursued by future nonlinear 

flying qualities research. 

5.2   CONCLUSIONS 

The principal conclusions that can be drawn from the 

NFQ research concern the usefulness of canonical systems theory 

in evaluating intrinsic flying qualities criteria.  Extrinsic 

flying qualities criteria and their correlation with the intrin- 

sic criteria explored in the NFQ research remains to be investi- 

gated.  Experiments with the intrinsic flying qualities criteria 

did provide sufficient data to evaluate the sensitivity of the 

criteria to maneuver differences, dynamic coupling (e.g., di- 

hedral) during a maneuver, and control cross-coupling.  In 

addition to the canonical system experiments, a significant 

product of the NFQ research is the development of a set of 

canonical system analysis tools which can be used to analyze 

other aircraft models and ultimately, provide a fundamental 

tool for the correlation with extrinsic flying qualities. 
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Bearing in mind the distinction between intrinsic and 

extrinsic flying qualities and the proper goals of the current 

program, the major conclusions are: 

• A literature search revealed that global 
nonlinear system theory is immature for 
present application to aircraft flying 
qualities analysis and fails to meet two 
goals of the current program:  compati- 
bility with the current equivalent sys- 
tems methodology, and computable and 
constructive theorems that yield numeri- 
cal results 

• Numerical results from applying canonical 
systems theory to a nonlinear six-degree- 
of-freedom aircraft model suggest that 
canonical system matching can measure 
the tendency of the aircraft dynamics to 
behave like the pilot-prefered dynamics, 
e.g., longitudinal-lateral decoupling 

• The measure of the closest canonical 
system match, i.e., ||AF|| and I|AG|| 
both reflected the onset of roll-induced 
sideslip, kinematic coupling, and control 
cross-coupling especially during a roll- 
reversal 

• The subsequent application of the relative 
controllability theorem yielded criteria, 
indicative of the controllability proper- 
ties of the canonical and true linearized 
systems and of the controllability proper- 
ties of specific subrystems of the 6-DOF 
dynamics; the criteria tracked the expected 
controllability variations, e.g., (onset 
of coupling and loss of control authority) 
expected during a large amplitude maneuver. 

Thus, the analysis methodology and flying qualities criteria 

developed in this program have been shown to yield representa- 

tive intrinsic flying qualities criteria; where intrinsic im- 

plies that the criteria are functions of the aircraft dynamics 

alone and are not indicative of pilot reaction to those dynamics 
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5.3   RECOMMENDATIONS 

The recommendations after this phase of the NFQ re- 

search obviously is to suggest the investigation of extrinsic 

flying qualities with the canonical systems methodology.  An- 

other area of research, however, is further development of the 

canonical system structures. Although the candidates described 

were not ad hoc choices, being based on the mathematical struc- 

ture of linearized aircraft dynamics, further development would 

not be wasted.  Finally, improvements in the numerical procedure 

would be welcomed as well. 

The primary recommendations of the NFQ research, in 

descending priority, are thus: 

• An initial approach to calibrating the 
canonical system-parameters to extrinsic 
flying qualities should be pursued through 
the analysis of autonomous flying modes, 
e.g., automatic landing, terrain-following, 
in which the vehicle performance can be 
quantitatively evaluated without pilot 
opinion (verifying that the ride comfort 
requirements of the pilot and crew are met) 

• In a parallel investigation, the canonical 
systems can be flown while adjusting the 
control and guidance algorithms, to yield 
an ideal system structure that provides 
the best performance in a given mission, 
hence specializing the canonical system 
structure to a mission specification 

• Finally, research in applying nonlinear 
system theory to flying qualities analysis 
should and must continue, in particular, 
the current research suggests that Volterra 
series methods promise some of the greatest 
near-term progress. 
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Note that these recommendations have been formed with consid- 

eration of the difficulties and high cost associated with 

pilot-in-the-loop simulations for calibrating the canonical 

system parameters.  Finally, continued research in nonlinear 

sys em theory is warranted, not because of the shortfalls of 

the ^.^nonical systems theory, but because of the rapid prog- 

ress being made in all facets of nonlinear system theory. 

117 



APPENDIX A 

AFTI/F-16 SIX-DEGREE-OF-FREEDOM 
SIMULATION OVERVIEW 

The 6-DOF simulation used in the NFQ applied formula- 

tion implements a comprehensive AFTI/F-16 aircraft model.  The 

6-DOF simulation also provides automated linearization and 

eigenanalysis.  The linearization directly provides linear 

system representations of the aircraft dynamics for use in the 

canonical system evaluator software.  This appendix describes 

the functional features of the 6-DOF simulation and documents 

all the modeling equations necessary for the 6-DOF dynamics, 

AFTI/F-16 aerodynamics, and various other subsystems required 

to produce a faithful aircraft trajectory simulation.  Section 

A.l describes the overall structure and operation of the primary 

modules that perform the integration, linearization, eigenanaly- 

sis, and output functions.  Section A.2 then gives a detailed 

account of each of the subsystem modeling modules.  Finally, 

Section A. 3 concludes the appendix with a description of the 

linearization and eigenanalysis procedures.  Note that through- 

out this discussion a state-variable structure is emphasized, 

thus, facilitating the eigenanalysis and easy interface with 

the other NFQ analysis procedures (described in Appendix B). 

A.l   OVERALL PROGRAM STRUCTURE 

A.1.1 The Main Program 

The 6-DOF simulation is organized into a hierarchy of 

subroutines in which the lowest level contains the direct im- 

plementation of subsystem functions.  The central features of 
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the simulation are contained within a block of subroutines 

which are called by the MAIN program directly.  The calling 

sequence is diagrammed in the upper half of Fig. A.1-1.  Essen- 

tial numerical algorithms are computed in the routines INTEG 

and EIGEN.  Subroutine INTEG performs the numerical integration 

of the state derivatives, subroutine EIGEN directs the lineari- 

zation and eigenanalysis.  Subroutine OUTPUT provides the print- 

ing of intermediate variables and the storage of data for sub- 

sequent plotting.  Subroutine UOIN reads time-spaced values 

for the aircraft control surfaces for flying preprogrammed 

maneuvers.  The lower half of Fig. 2.1-1 diagrams the relation- 

ship of the module KINMAT to the individual subsystem modules; 

the description of this module can be found in Section A.2.2. 

UOM I    ****    I 

LTZl 

j   | KWMUT   I 

I KMMAT   | 

OUTPUT 

I   STATf    I    I KMMAT I I    MTIF    I   I     EKMF    I I   PITSM   I 

rrzi nrzi 
|  CWCOM  | | QRAVITY |  I ATMOSP |   |   AIKOAT   | |    F100     |   | MASWW [   j   AtWODY |   |     IW.I [ BIWtWWO |   |    wtOT    I    |     CAS      |       ACTUAT | 

[ AIH02D j 

Figure A.1-1 Six-Degree-of-Freedom 
Simulation Structure 
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A flow chart of the MAIN program and its use of sub- 

routines INTEG, EIGEN and OUTPUT is diagrammed in Fig. A.1-2. 

The major recursive computation is indicated with dash lines. 

This is the integration loop which calls INTEG continually 

until the number of integration steps has exceeded the maximum. 

During each pass through this loop, a test is performed to 

determine whether a call to EIGEN is needed.  Similarly there 

is a variable, INTOUT, which is cycled to determine when calls 

to OUTPUT are made.  These are typical of the supervisory func- 

tions performed by the MAIN program, with selectable parameters 

available in the input NAMELIST for specifying the specific 

operations. 

A.1.2  Integration of the State Vector in INTEG 

The subroutine INTEG, the core module of the 6-DOF 

simulation, performs the numerical integration of the nonlinear 

differential equations.  The subroutine is primarily a numeri- 

cal integration algorithm but it also organizes calls to two 

routines, KINMAT and STATE.  KINMAT provides the state deriva- 

tives of the nonlinear dynamics after computation of the state 

at each successive time step.  The subroutine STATE is a unique 

feature of the 6-DOF simulation which combines the state deri- 

vatives from each module (i.e., subroutine where they are 

calculated) and disseminates the newly integrated state to 

each module.  Consequently, all time der^ itives are combined 

into a single state vector and simultaneously integrated in 

INTEG.  The new states which are the result of the numerical 

integration are returned to the respective modules for a new 

evaluation of the derivatives. 

In the FORTRAN 77 programming language this is accom- 

plished by having a common block associated with each subroutine 

which contains the states, the state derivative, and an integer 
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Figure A.1-2   Simulation Flow Chart (MAIN Program) 

121 



denoting the number of states for a particular aircraft sub- 

system.  This option of specifying the number of states in any 

subroutine facilitates the rapid exchange of subroutines or 

subsystem mouels because the subroutine STATE concatenates 

only the number of states indicated by the state number in the 

associated common block.  In addition to providing modularity 

and a flexible state vector, the operations performed in INTEG 

ensure that all the time derivates are integrated in an iden- 

tical algorithm and without time skewing.  The unforeseen time 

delays or inconsistent roundoff errors associated with simula- 

tions which integrate portions of the model separately, are 

obviated in this approach. 

The program flow chart is outlined in Fig. A.1-3. The 

recursive loop, which is executed four times, is characteristic 

of the fourth-order Runge-Kutta algorithm which is used for 

the numerical integration.  Attributes and rationale for the 

Runge-Kutta algorithm can be found in Ref. 66.  The 6-DOF simu- 

lation specifically employs a modification to the algorithm 

which bears the name Runge-Kutta-Gill.  This modification 

provides two improvements:  a form for the algorithm which 

minimizes the storage of successive values of the function, 

and a roundoff error control scheme.  The derivation of this 

scheme can be found in the work by Gill in Ref. 67 or in an 

excellent tutorial presented in Ref. 66. 

A. 2   SIX-DEGREE-OF-FREEDOM EQUATIONS OF MOTION 

A.2.1 The Equations of Motion and Coordinate Conventions 

The six-degree-of-freedom equations of motion include 

all accelerations, velocities, rotational rates and rotational 

accelerations in three dimensions necessary for specifying the 
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trajectory of a free body.  When modeling rigid-body dynamics 

in three dimensions, a variety of coordinate frames may be 

used.  For the AFTI/F-16 6-DOF simulation the coordinate frames 

are an inertial frame, associated with a flat earth approxima- 

tion, and a body axis frame (see Fig. A.2-1).  Figure A.2-2 

depicts the sign convention for the AFTI/F-16 control surface 

deflections.  A direction cosine matrix is used to transform 

vectors from inertial to body axis (or vice versa with its 

transpose).  The description of the equations of motion that 

follows is a state variable description, and hence affords 

convenient vector and matrix operations for coordinate trans- 

formations, linearization, and eigenanalysis. 

BODY 

V, RELATIVE 
WIND 

Figure A.2-1   Coordinate System Conventions 
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Figure A.2-2        Control Surface Sign Conventions 

The state space model of the equations of motions 

consists of twelve states (see Table A.2-1), which are; 

Three aircraft translational velocity 
components in the body axis coordinate 
frame 

Three inertial position components de- 
fining the center of gravity (CG) posi- 
tion in the inertial coordinate frame 

Three rotation rate components of the 
body axes with respect to the inertial 
coordinate frame 

Three Euler angles which denote the angle 
between similar components of the body 
axes and inertial coordinate frames. 
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TABLE A.2-1 

SYSTEM DYNAMIC STATES:  THE 12 KINEMATIC STATES 

STATE 
NUMBER DEFINITION MATH 

SYMBOL UNITS 

1 

2 

3 

A 

5 

6 

7 

8 

9 

10 

11 

12 

Velocity along body x-axis 

Velocity ^long body y-axis 

Velocity along body z-axis 

Position along inertia! x-axis 

Position along inertial y-axis 
(crossrange) 

Position along inertial z-axis 
(negative altitude) 

Body angular rate about body 
x-axis 

Body angular rate about body 
y-axis 

Body angular rate about body 
z-axis 

Body roll Euler angle 

Body pitch Euler angle 

Body yaw Euler angle 

v 
X 

y 

B V 

rl=* 

w1=p 

W2=q 

w3=r 

e 

ft/sec 

ft/sec 

ft/sec 

ft 

ft 

ft 

rad/sec 

rad/sec 

rad/sec 

 i 
<3U 

rad 

rad 

These twelve states can be assembled into four vec- 

tors of three components each. These vectors are defined as: 

v 4 Aircraft translational velocity with respect 
to inertial coordinate frame in the body 
axes coordinate frame 
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r ^ Aircraft (CG) position vector in the 
inertial coordinate frame 

w & Aircraft rotation rates with respect 
to the inertial coordinate frame in 
the body axis coordinate frame 

EANG A Vector of three Euler angles. 

The state space equations for the twelve kinematic 
states are as follows.  The time derivative of body-axis 

velocity is given by 

B qS C, 
m 

f 
m " 

+ C^ g1 - w x vB (A.2-1) 

the time derivative of inertial position is given by 

r1 = cl vB (A.2-2) 

the time derivative of rotation rate is given by 

w = [IN1] { ^S -m " ^S (^ X -f) + ^T ' (^ X h^] 
(A.2-3) 

where 

C -m 

b C, 

c C. m 

b C. n 

and finally the time derivative of the Euler angles, 
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EMG = 

w-, + (sin (j) W2 + cos (j) w-) tan 9 

cos 0 Wp - sin 0 w^ 

(sin (]) W2 + cos (j) w^)/cos 6 

(A.2-4) 

The following quantities used in the six-degree-of- 

freedom equations are computed in the various modules called 

by KINMAT.  The definitions are 

q = 

S = 

b = 

c = 

m = 

■N 

C, = 

fT = 

5T 
= 

ACg = 

Dynamic Pressure 

Aerodynamic Reference Area (wing plan area) 

Lateral Reference Length (wing span) 

Longitudinal Reference Length (mean wing chord) 

Mass 

Direction Cosine Matrix (Table A.2-2) 

= [Cfr1 or [d*]T 

Inertia tensor (see MASSPR module description) 

Aerodynamic force coefficients in body axes, 
C , C , C x' y'  z 

Aerodynamic moment coefficients, C», C^, Ci m  n times associated reference length 

Thrust vector in body axis 

Thrust moment vector 

Vector from Cg to aerodynamic reference point 
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TABLE A.2-2 

DIRECTION COSINE TRANSFORMATION 
MATRIX ELEMENTS 

i.J 
,1 
'B Ci     ij 

1,1 

1,2 

1,3 

2,1 

2,2 

2,3 

3,1 

3,2 

3,3 

cos 6 cos ij> 

sin ()) sin 6   cos 4»  "  cos ty  sin ty 

cos (]) sin 9   cos I{I  + sin 0  sin ij* 

cos 6 sin ii< 

sin $ sin 6 sm i|) + cos 0 cos ty 

cos (|) sin 9 sin i() - sin $ cos I|J 

- sin 9 

sin (j) cos 9 

cos 0 cos 9 

The right side of Eq. A.2-1 includes the summation of 

all forces acting on the aircraft. The four terms on the right 

side of Eq. A.2-1 represent the following: 

• Aerodynamic force effects in body axes 

• Thrust force effects in body axes 

• Projection of gravity onto body axes 

• Centripetal accelerations (treated as 
apparent forces). 

Equation A.2-2 defines the rate of change of the mis- 

sile inertial position as the transformation of the body- 
B 

referenced velocity v .  The right side of Eq. A.2-3 represents 

the effect of all moments acting on the airframe.  The quantity 
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IIJJ is the inertia matrix (see Eq. A.2-23); the following four 

terms are included within the b^ces of Eq. A. 2-3, from left 

to right: 

• Aerodynamic moments about the body-fixed 
aerodynamic reference point 

• Aerodynamic moment translation to Cg 
location 

• Thrust moment about the Cg 

• Gyroscopic coupling terms (again, 
treated as apparent noments). 

Equation A.2-4 represents the dynamics of the Euler angle 

states; a concise derivation of these equations can be found 

in Ref. 55, pp. 125-127. 

A.2.2 The Module K1NMAT 

The subroutine K1NMAT performs all the operations 

necessary for computing the twelve state derivatives of posi- 

tion, velocity, rotation rate and Euler angles.  Equations 

A. 2-1 to A.2-4 are evaluated in KINMAT.  In addition, KINMAT 

is an executive routine which performs the function of calling 

all auxiliary and subsystem modules in the order necessary for 

proper closed-loop simulation (i.e., an aircraft containing an 

augmentation system which uses feedback).  The calls to the 

various auxiliary modules are broken into two sequences so 

that KINMAT can compute specific force, which is required by 

the accelerometer model within the control augmentation system. 

Figure A. 2-3 is a flow chart for KINMAT.  All those 

subroutines which were depicted in Fig. A.1-1 as being below 

KINMAT are explicitly called by KINMAT.  Of the subroutines 

called, a portion are auxiliary modules necessary for simulating 
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an aerodynamic vehicle; these modules will be described in the 

following section.  The remaining subroutines are subsystem 

models pertinent to simulating the AFTI/F-16 aircraft.  These 

subsystem models include both intermediate variable computa- 

tions and state dynamics.  Common blocks are provided with 

each subroutine with the naming convention S_       where 

the blanks are the respective subroutine names.  These speci- 

fic common blocks are used for input/output of the states, 

state derivatives, and state dimension for each subsystem.  By 

altering the state dimension parameter (from input data), di- 

rect modification to the number of subsystems simulated can be 

accomplished without altering the source code of KINMAT. This 

procedure provides a high degree of versatility and modularity 

to the simulation structure. 

A.2.3 Auxiliary Modules for the Equations of Motion 

The equations of motion for a general rigid body in 

space were described in the Subsection A.2.1. Additional com- 

putations and earth relative information are also necessary 

for the simulation of an aerodynamic vehicle in KINMAT.  The 

essential modules (i.e., subroutines) in the 6D0F simulation 

are:  CIBCOM, ATMOSP, GRAVTY, AIRDAT and MASSPR.  A description 

of each of these modules will follow. 

Module CIBCOM:  Coordinate Transformation - The sub- 

routine CIBCOM is used to compute the direction cosine matrix 

which is required for transforming vectors from the inertial 

to body coordinate frames or vice versa.  The specific ele- 

ments of the matrix are sine and cosine functions of the set 

of Euler angles (states 10, 11, and 12 in Table A.2-1) relat- 

ing the coordinate frames.  The subroutine accepts as input 

the Euler angle array, EANG(3), which is stored in the kine- 

matic state common block, SKINMA.  The subroutine state returns 
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the computed body-to-inertial transformation matrix CB (de- 

fined in Table A.2-2) and its transpose, the inertial-to-body 

transformation matrix, C,.  The sines of Euler angles, fc) and 

■1), and the cosines of 9 and 4» are returned as output as well. 

All of the output variables are passed via common block, 

OCIBCO, for later use in KINMAT and any additional routine 

which requires these Euler angle functions. 

Module ATMOSP:  Atmospheric Modeling - The subroutine, 

ATMOSP, provides a number of atmospheric variables as a func- 

tion of altitude using the 1962, U.S. Standard Atmosphere 

(Ref. 56).  The variables of interest are the atmospheric pres- 

sure, the air density, and the speed of sound.  Furthermore, 

there is a provision to accept tables defining a wind velocity 

versus altitude profile from the input data stream. 

The variables of interest (atmospheric pressure, air 

density, and speed of sound), are stored in tables as a func- 

tion of altitude.  Linear interpolation is performed to compute 

values of these variables for altitudes which are not stored 

in the tables.  Consistent with this arrangement, if a need 

arises to input wind profiles, vector wind velocities would be 

supplied at those altitudes specified in the altitude table. 

Module GRAVTY:  Gravity Modeling - The subroutine 

GRAVTY computes gravitational acceleration as a function of 

altitude above a flat earth approximation.  The flat earth 

approximation is the inertial system defined in Section A.2; 

hence, gravitational acceleration is a function of the third 

component or z-axis of that coordinate system.  The specific 

expression in the software is 

grav(3) = Go - (3.07 * lO"6 h) (A.2-5) 
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where 

Go = 32.1735 ft/sec2 

h = -r  in feet z 

Note that the gravitational acceleration is a vector 

with the first and second components set to zero.  The use of 

a full vector in computation of the vehicle specific accelera- 

tion provides the flexibility to include an expanded gravity 

model by simply altering the equations in subroutine GRAVTY. 

Module A1RDAT:  Wind Axis Computation - The subroutine 

AIRDAT consists of the equations which define the aerodynamic 

variables necessary for computing the aerodynamic forces and 

moments.  The first in this series of equations defines the 

relative velocity vector v , which represents the velocity 

(coordinatized in body axes) of the vehicle with respect to 

the air mass, where wind velocities are coordinatized in the 

earth inertial frame.  Thus, 

v = vB - C? v* (A.2-6) —r  —    i —w 

where 
D 

Cj is the inertial to body frame transformation 
matrix 

v is the wind velocity in the inertial frame —w 
D 

v is the aircraft velocity in the body 
axis frame. 

The magnitude of v  is used in the Mach number com- 

putation, thus. 

v = Jv2 + v2 + v2 (A.2-7) m  V rl   r2   r3 
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MACH = v /v (A.2-8) m s 

where v is the speed of sound, a function of altitude computed 

in ATMOSP. 

The next parameter of interest is the dynamic pres- 

sure, q.  It is computed as 

q^PV^ (A.2-9) 

where p is the air density, a function of altitude computed in 

ATMOSP. 

The remaining equations define the aerodynamic angles, 

which identify the orientation of the body axis with respect 

to the relative velocity vector.  The typical angles for single' 

plane-of-symmetry vehicles are the angle-of-attack (a) and the 

sideslip angle (ß), defined as 

a = tan'1 (v^ /v ) (A.2-10) 
r3 rl 

ß = sin-1 (vr /v) (A.2-10) 
r2 m 

Note that these definitions form valid Euler angles which can 

be used for transforming vectors from the wind axis coordinate 

frame to the body axis frame. 

For reference, a cross index of Fortran variables to 

math symbols for the parameters computed in the auxiliary mod- 

ules is provided in Table A.2-3.  Units for each of these pa- 

rameters are provided as well. 
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TABLE A.2-3 

AUXILIARY VARIABLES AND THEIR RESPECTIVE 
MATH AND COMPUTER SYMBOLS 

VARIABLE SUBROUTINE 
MATH 
SYMBOL 

COMPUTER 
LABEL 

UNITS 

Wind Velocity ATMOSP V 
w 

VWIND(I) 
1=1,3 

ft/sec 

Atmospheric Pressure ii P PATM lbf/ft2 

Density of Air ii P RHO slugs/ft3 

Speed of Sound M V 
s 

VS ft/sec 

Relative Velocity AIRDAT V 
—r VR(I) ft/sec 

Relative Velocity 
Magnitude 

M 
VM VM ft/sec 

Dynamic Pressure II 
q Q 

2 
slugs/ft'sec 

Angle-of-Attack ii a ALPHA degrees 

Total Angle-oj'-Attack II 
aT ALPTOT degrees 

Sideslip Angle II ß BETA degrees 

Mass MASSPR ID RMASS slugs 

Center of Gravity 
Location 

MASSPR ii CG(I) feet 

Center of Gravity to 
Aero Reference Point 

II ACK DELCG(I) feet 

Inertial Tensor II 

'N RIN(I,J) 
1=1,3 J=l,3 

slug-ft 

Inverse Inertial 
Tensor 

it h1 RININV(I,J) 
1=1,3 J=l,3 

1/slug-ft2 

Gravity Vector GRAVTY s GRAV(I) ft/sec 

Inertial to Body 
Transformation 
Matrix 

CIBCOM C1 LB 
CIB(I,J) 
1=1,3, J=l,3 

-- 

Body to Inertial 
Transformation 
Matrix 

it CB 4 CBI(I,J) 
1=1,3 J=l,3 
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A.2.4 Aircraft Specific Models:  AERODY, PROPUL 
MASSPR and CAS 

The simulation model becomes specific to the AFTI/F-16 

vehicle upon inclusion of real data for the subroutines PROPUL, 

MASSPR, AERODY, and CAS.  Subroutines PROPUL and AERODY imple- 

ment a series of linear table interpolations to determine pro- 

pulsion and aerodynamic parameters as a function of parameters 

such as Mach number and angle of attack (a).     Subroutine CAS 

provides a model for a Control Augmentation System, a manda- 

tory addition to the AFTI/F-16 because of open loop instabil- 

ity.  The CAS also aids in integrating the guidance commands 

(e.g., acceleration and roll) needei to produce the desired 

large amplitude maneuvers.  The large number of dependent 

variables used in the table interpolations of AERODY and PROPUL 

precludes a detailed listing of the modeling data. The follow- 

ing description will present only the equations of the AFT1/ 

F-16 aerodynamics model used in the NFQ 6-DOF simulation and 

the Pratt and Whitney F-100 engine model. 

Module AERODY:  Aerodynamic Coefficient Computation - 

The NFQ 6-DOF simulation contains a thorough set of 67 aero- 

dynamic coefficients.  These coefficients are functions of 1 

to 5 independent variables."  Although the complete model, 

from which this subset is drawn, has 217 variable tables, (in- 

cluding propulsion and mass properties) the excluded modeling 

detail is not critical for the NFQ analysis.  In particular, 

flexible body coefficients, landing gear, flight test, and 

stores effects were deemed unnecessary for the NFQ analysis 

6-DOF simulation.  In the presentation of the aerodynamic 

modeling equations, mathematical symbols with functional 

dependence indicated by multiple subscripts and table look-up 

rDue to the large number of coefficients, a separate module 
AER02D computes all two-dimensional coefficient interpolations 
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dependence indicated by parentheses will be used to represent 

the various coefficients.  The notation used in these equations 

is consistent with the General Dynamics AFTI/F-16 dynamics 

model definition. 

The nomeclature for the independent variables is: 

or = angle of attack (degrees) 

aT = tail angle of attack (aT = a + 6, ) (degrees) 

a = equivalent rigid body deflection (degrees) 

ß = sideslip angle (degrees) 

M = Mach number 

v = relative velocity magnitude (ft/sec) 

öu = horizontal tail deflection 
6H = 1/2(6H     + 6H   ) (degrees) 
H       "right   "left 

6vr = vertical canard deflection 
v    6  = 1/2(6      - 6      ) (degrees) vc    /   vc, c vc . , '    & left     right 

6qp = snowplow, differential canard deflection 
«sp - ^„c, . + «vc .  > (agrees) K left     right 

ö^D  = speed brake deflection (degrees) 

6R = rudder deflection (degrees) 

^LEF = lea^ing edge flap deflection (degrees) 

6TF]r = trailing edge flap deflection 
6TEF = 1/2(6TEF     + 6TE    ) (degrees) 

right      left 

6p.  = flaperon deflection, differential trailing 
edge flap 
6p. = l/2(6TpF    -ÖTK-F   ) (degrees) 
FA       TEFright TEFleft 
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6U.  = aileron deflection, differential horizontal tail 'HA 
'HA 1/2(6H    -6„   ) (degrees) 

"right Hleft 

The nondimensional lift equation is: 

CNWBV
(5LEF'5TEF'0',M) 

+ ACN  (6LEp,6TEp,aT,M) cos 6^ 
6H 

ACAA (6LEF'6TEF'aT'M) sin 6H 
6H 

CAWBV
(ÖLEF'6TEF'0''M) 

cos a 

+ ACN (6EEp,6rpEp,arj,,M) sin 6^ 
6H 

- ACA (6LEE,6TEE,aT,M) cos 6 
6H 

H sin a 

+ ACL  (6vc,ß,a,M) + ^ AC
L  (ß.a'M) 

'VC 'SP 

USB 
büT AC L  (a,M) + CL  (6TEF,a,M)|6FAl 

'SB 'FA 

Qc ac + CL (a,M)|6R| + CL (a.M) ^-  + CL.(a,M) ^ 
m    a m 

+ ACT (ß,a,M) 
Lß 

(A.2-11) 
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The nondimensional drag equation is 

CD = 
CN   ^,5LEF'<5TEF,0',M) + ACN (6i vv'6Tvr'ar>M)   c05 6 

WBV 6 'H 

ACA, (6LEF'6TEF'0'T'M) Sin 6H 
6H 

CAWBV
(6LEF,6TEF'a'M) 

sin a 

+ ACNA (6LEF'6TEF'0'T'M) sin 6H 
6H 

+ ACAX (,5LEF'6TEF'Ü'T'M) COS 6H 
6H 

cos a 

+ ACD  (6„„,ß,0f,M) + vc 
vc 

^ 
ACp.  (ß,a,M) 

sp 

USB w: ACn  (a,M) + Cn  (6Tr.r,a,M)|6irA| 'D 
SB 

'D.  v-TEF,",xx/iuFAi 

TA 

UR 
TV. ACn  (a,M) + ACp. (ß,a,M) 'D D 

R ß 
(A.2-12) 
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The nondimensional side force equation is 

S = Cyuß»
(<5LEF'6TEF'ß'a'M) + ACyvT

(6LEF'6TEF'P'0''M) WBH  "iJl  ilJi •'VT 

6, 
+ AC   (6r^,ß,of,M) + 

6, y^  ' vc 
'VC 

SP 
257 AC   (ß,a,M) 

y6sp 

+ AC   (6R,6LEF,6TEF,a,M) + C   (6FA)6LEF,6TEF,a,M) 
ÖR ÖFA 

+ 4 ACy,  (6FA',5LEF'6TEF'0''M) 

'HA 

■ ACy6  (öFA'6LEF'fiTEF'0''M) 

FA 

'HA 

'FA 

+ C (a.M) ^- + C (a,M) f 
rb 

(A.2-13) 
m 

The nondimensional pitching moment equation is 

Cm = CmURU
(6LEF'6TEF'0''M) + ACmA 

(6LEF'6TEF'aT'M)6H WBV Ou 

+ 4C       (a.M) + AC   (6  ,ß,or,M) 
m(«vc=0>       «VC 

^ 
ACm  (ß.a.M) + m 

sp 

USB ACm   (a,M) m 
SB 

+ Cm  <l5TEF'0''M)|6FAl + Cm  ^'M>I6RI 
FA R 

+ Cm ^'M> lf + Cn.>'M> 2f- + ACmft^'a'M) 

q      ma       m     ß      (A.2-14) 
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The nondimensional yawing moment equation: 

Cn = CnWBH
(6LEF'6TEF'ß'0''M) + ACnVT

(6LEF'6TEF'^a'M) 

+ ACn   (6vc,ß,a,M) + 
6VC 

^ 
ACn   (ß.a.M) 

6SP 

+ AC  (öR,6LEF,5TEF,a,M) + AC   (6FA,6LEF ,6TEF ,a ,M) 
6R 6FA 

+ 4 ACn.  (6FA'<5LEF,6TEF'0''M) 
6HA 

ACnA  
(öFA'6LEF'6TEF'a'M) 

6 FA 

UHA 

"^FA 

+ C  E^- + C  ^ np ^T   n„ 2v 
rb 

r2^ 
(A.2-15) 

Finally, the nondimensional rolling moment equa- 
tion is: 

^St  ~ ^S,       (^L£p »öjFp,ß .a ,M) + ACÄ  (öE£F ,Ö^£F,ß ,of ,M) 
WBH VT 

+ AC^   (6VCJß,a,M) + 
6VC 

USP 
257 AC£  (ß,a,M) 

6SP 

+ ACÄ  (6K,6^p.F,6TEF,o( ,M) + AC£   ^FA'^LEF'^TEF'
0''M^ 

+ 4 

R 

ACSLX     (6FA'6LEF'<5TEF'0''M) 
6HA 

'FA 

" AC6FA
(6FA'6LEF'<5i.F'0''M) 

rb UHA 

. F/J   p  m    r  m 

+ c* £-+ S, ^ 

(A.2-16) 
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Note that the flaperon and differential tail deflections are 

slaved together such that 

,   . 6FA 
6HA " "ZT 

5HA For numerical computation, the quantity T— is set equal to 
0FA 

zero when 6p. <_ .1 deg. 

The final computations necessary are the transforma- 
tion of the force and moment equations, A.2-11 to A.2-16, in 

wind axes to a body axis set, and the addition of moments due 

to the CG. to aerodynamic reference point moment arm.  The 

final body axis forces and moments are 

C0    = C0  cos ot - C sin a - C v m ^       (A.2-17) BODY   £        n        y arm b 

C     =C+Cvv_-CCG/, (A.2-18) 
RODY    m    X  a 

SoDY = C£ Sin a + Cn cos a + Cy xarm (A-2-19) 

C = Cg   sin a - Gr. cos ß cos a (A.2-20) 

Cy = Cy (A.2-21) 

Cz = '^C£ cos a  + CD  cos ^ sin C'^ (A.2-22) 

The nondimensional force and moment coefficients in 

Eqs. A.2-17 Lo A.2-22 are dimensionalized in accordance with 
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the definitions presented early in the equations of motion, 

Eqs. A.2-1 to A.2-4. 

A feature of the modeling in AERODY which must be 

noted is that surface deflection dependent terms (e.g., AC  ) 
m6H 

can be computed as a function of either control augmentation 

commands or actuator output.  This feature, which can be se- 

lected at any time and permits the inclusion or exclusion of 

actuator dynamics from the trajectory simulation and the 

eigenanalysis (to be described in Section A.3).  Excluding the 

actuator dynamics reduces the number of states, hence simpli- 

fying the interpretation of eigenvalues and permitting the use 

of a larger integration step size.  The larger permissible 

step size occurs because the actuators typically represent the 

highest-frequency dynamics in the system. 

Module PROPUL:  F-100 Engine Model - The F-100 engine 

model contained in module PROPUL is drawn directly from Ref. 78, 

Linear interpolation of five thrust tables which are functions 

of Mach number provide the total thrust computation.  The vari- 

able time-constant lag model discussed in Ref. 78 is selectable 

from an input flag to the 6-DOF simulation.  When this model is 

not selected, thrust response to throttle settings is instan- 

taneous . 

Figure A.2-4 depicts a brief flowchart of the F-100 

model including critical computations.  The variables in 

Fig. A.2-4 are defined in Table A.2-4.  Note that computations 

of TMAX and TMIL which are functions of altitude (i.e., a dif- 

ferent table is used for above and below 36,089 feet) are not 

included in Fig. A.2-4. 
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Figure A.2-4 F-100 Engine Model Flowchart 
and Computations 
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TABLE A.2-4 

DEFINITIONS OF F-100 ENGINE MODEL VARIABLES 

NAME DESCRIPTION 

DELTA 

FT5 

I LAG 

PCTRPM 

RTC 

SDPROP 

SPROP 

THCMD 

THRUST 

TLOW 

TMAX 

TMIL 

UPROPU 

Ratio of altitude to sea level air pressure 

Table of idle thrust at sea level versus Mach 

Dynamics flag:  ILAG=1 enables first-order lag 

Percentage of full compressor rotational speed 

Reciprocal of first-order lag time constant 

Propulsion dynamic state derivative 

Propulsion dynamic state 

Thrust command (throttle setting 0 to 100) 

Engine thrust (pounds force) 

Interpolated value of idle thrust 

Thrust at full after-burner corrected for 
altitude 

Thrust at full military power corrected for 
altitude 

Intermediate throttle setting variable 

Module MASSPR:  Mass Properties Model - The mass pro- 

perties model in module MASSPR accounts for the mass, inertia, 

and center-of-gravity to aerodynamic reference point changes 

that occur as fuel is depleted within the aircraft.  However, 

the propulsion model does not include mass flow rates as a 

function of throttle position or thrust.  Consequently, the 

MASSPR module simply selects a set of mass, moment of inertia, 

cross product of inertia, and C.G. locations from a table as a 

function of a user supplied index.  This procedure provides a 
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constant set of mass properties which do not change during a 

simulation trajectory. 

One additional function of the mass properties module 

is to compute the inertia tensor and its inverse - for the 

AFTI/F-16 model the inertia tensor is 

ln = 

"XX 

0   I 

zx 

0 

'yy 
o 

I zx 

0 

zz 

(A.2-23) 

Note, computer variables and units for the mass properties 

module were previously listed in Table A.2-3. 

Modules CAS and PILOT:  Control Augmentation System 

and Pilot Models - The CAS and PILOT modules implement the 

final models necessary to simulate AFTI/F-16 large amplitude 

maneuvers.  CAS implements a custom control augmentation sys- 

tem for stabilizing the aircraft longitudinal mode and to 

permit direct acceleration and roll attitude commands to the 

aircraft.  Open-loop flap scheduling and programmed control 

surface deflections are also implemented within the CAS module 

The PILOT module does not contain a pilot model; instead it 

contains guidance processing necessary to execute the desired 

large amplitude maneuvers. 

A.3 STABILITY ANALYSIS ACROSS FLIGHT CONDITIONS 

A particularly advantageous technique, which the 

state space implementation of the 6-DOF simulation affords, is 

the convenient linearization of the nonlinear equations.  The 
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linear system matrix that can be derived from this lineariza- 

tion process readily provides the dynamic system eigenvalues 

(and therefore poles) via efficient eigenanalysis algorithms. 

With the availability of a convenient method for computing 

linear time-invariant characteristics of the aircraft system 

in a simulated trajectory, the simulation becomes an essential 

tool of the canonical systems, flying qualities analysis. 

A.3.1 The Module PRTLF 

The computations necessary for linearizing the system 

equations are implemented in subroutine PRTLF.  Given the gen- 

eral nonlinear vector differential equation computed in the 

simulation, 

x = f(x,u,t) (A.3-1) 

where 

f is a nonlinear vector function of time, x the 
state vector, and u the driving functions 
(controls) 

PRTLF computes the following linear vector matrix differential 

equation about a selected point in the aircraft trajectory, 

af 9| 
^ + an 

^o 

Au (A.3-2) 
u —o 

af 
The partial derivative or Jacobian, g—, can be represented by 

a matrix of constant coefficients for the time-invariant system 

The subroutine PRTLF computes the elements of the matrix, i.e., 
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9 f 
- for i      row, j  column, with the central difference equation axj 

9f.   £i<xo.+Axj) ■ fi^o.-^j» 

^ 

where 

x  is the j  state of the vector x at the point 
j in the trajectory chosen for linearization 

Ax. is the perturbation value for the j  state. 

8f 
The second Jacobian in Eq. A.3-2, g— is also a matrix of con- 

stant coefficients which relates the external driving func- 

tions to the state derivative.  The elements of the control 

effectiveness matrix are also computed with a central differ- 

ence equation 

3f.   fi(V+Äuj) - fi^o.-Auj) 

5-i =  J -K J  (A.3-4) 9u. 2Au. 

where 

u  is the nominal control value of the j o . j control at the time of interest 

Au. is the perturbation applied to the j control. 

Finally, the perturbation values. Ax. and Au. are 

selectable on input; they must be judiciously selected so that 

the values truly represent small perturbations of the respec- 

tive states or controls.  For example, typical runs have control 
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perturbations of one degree of control surface deflection, 

translational velocity perturbations of 5 ft/sec, and Euler 

angle perturbations of 0.005 radians.  Obviously these per- 

turbations are units dependent and hence careful attention 

must be paid to their magnitudes.  Furthermore, too small a 

perturbation will bury the changes in the state derivative, 

Ax, below the least significant digit of the computer creating 

erroneous results. 

A.3.2 The Module EIGEN 

The subroutine EIGEN is the eigenanalysis executive 

routine.  This routine performs the calls to PRTLF and EIGRF. 

EIGRF is an International Mathematical and Statistical Library 

(IMSL) routine which actually extracts the eigenvalues from 

the system matrix computed in PRTLF.  Finally, upon return of 

the eigenvalues EIGEN computes the natural frequency and damp- 

ing for each complex eigenvalue.  A flow chart for this process 

is depicted in Figs. A.3-1 and A.3-2. 

EIGRF performs its eigenanalysis by the QR algorithm. 

Essentially, this algorithm transforms the original input 

matrix to an upper triangular form.  In an upper triangular 

matrix, the eigenvalues are equal to the diagonal elements of 

the matrix.  These transformations are computed with additions 

and scalar multiplications of the rows of the system matrix 

and do not involve any powers of the coefficients, thereby 

avoiding the numerical difficulties inherent in raising num- 
* 

bers to a power.  An excellent discussion of these algorithms 

can be found in Refs. 57-59. 
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APPENDIX B 

CANONICAL SYSTEM EVALUATOR (CASE) SOFTWARE 

The CASE software is a package of FORTRAN 77 proce- 

dures which solve the flying qualities evaluation methodology 

developed in the NFQ program. The software package, in addi- 

tion to implementing a numerical solution of the methodology 

outlined in Section 3.4, integrates with the 6-DOF simulation 

software described in Appendix B and provides a simulation of 

the closest canonical system for verifying trajectory matches. 

This appendix documents the software structure (call- 

ing sequence), numerical solution procedures, and general usage 

of the CASE software.  The information provided herein consti- 

tutes a minimum level of documentation which can be used in 

executing, maintaining, and upgrading the software. However, 

this appendix is not intended as a comprehensive user's manual 

for the uninitiated user.  Section B.l describes the overall 

structure of and the modules which comprise the CASE software. 

Section B.2 documents the function of each primary module. 

Secondary modules, e.g., matrix multiply subioutine, are listed 

and described under auxiliary library procedures. 

B.l   OVERALL PROGRAM STRUCTURE 

The CASE software performs the functions necessary to 

numerically compute: 

•   The closest canonical system to a lin- 
earized state representation to the 
true aircraft dynamics, where a choice 
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of canonical system classes is available 
and the linearized system is provided 
by a numerical linearization within a 
6-DOF simulation 

• The relative controllability measure of 
the canonical system or the true linear 
time-varying system at selected points 
in an aircraft trajectory (including 
it0, tfi) 

• A linear time-varying simulation of the 
closest canonical system or the linearized 
true system over the reference trajectory 
through use of the true concrol surface 
deflections and initial state of the 
original 6-DOF simulation run. 

The first two features are newly developed numerical 

solutions to the flying qualities methodology outlined in Sec- 

tion 3.4 (closest canonical system evaluation) and Section 4.3 

(relative controllability theorem).  The third feature of the 

CASE software is a numerical integration scheme employing a 

discrete representation of a linear time-varying system. The 

sampling interval is equivalent to the control surface deflec- 

tion data intervals provided by the 6-DOF simulation. The three 

functions are interleaved, i.e., are performed independently 

to save execution-time memory requirements and simplify user 

control.  The closest canonical system executes in the procedure 

EQUIVD.  The linear simulation and relative controllability 

computation occur in the procedure LSIM. 

Figure B.l-1 depicts the overall calling sequence of 

the primary procedures in the CASE softw'are.  Note the inde- 

pendent sequences for the EQUIVD and LSIM procedures. Although 

executed separately, LSIM requires a file of closest canonic 

system matrices generated by EQUIVD.  Each of the modules de- 

picted in Fig. B.l-1 will be separately described in subsequent 

sections. 
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F.. 2   MODULE DESCRIPTION:  CLOSEST CANONICAL SYSTEM 
COMPUTATION 

The following module descriptions include documenta- 

tion of the equations to be solved, logical flow, and inter- 

face with other modules.  Details of the subroutine arguments, 

array dimensions, or data types will not be presented in this 

appendix. 

B.2.1 Module CASE 

CASE is an executive routine that transfers execution 

to either the EQUIVD or LSIM procedures, no significant opera- 

tions occur in this module. Current implementations of the 

CASE software permit direct entry into the EQUIVD and LSIM 

procedures, i.e., the CASE module is not executed. When used, 

CASE does rewind files that EQUIVD has used, e.g., the closest 

canonical system matrix file, prior to further use by the LSIM 

procedure. 

B.2.2 Module EQUIVD 

The module EQUIVD is the principal procedure for exe- 

cution of the canonical system matching algorithm.  This module 

organizes calls to the various modules which perform the read- 

ing and writing of user variables and true aircraft linearized 

dynamics, minimization of the L^, lorm of the difference between 

the true and canonical system matrices, and computation of the 

true and linearized dynamic system matrix eigenvalues.  The 

procedure calls a minimization routine for separate evaluation 

of the closest canonical dynamics and control effectiveness 

matrices.  Upon completion of each pair of optimizations, the 

final canonical system matrices are written to another file for 

subsequent use by LSIM.  The procedure continues to loop through 
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pairs of canonical system matches until the end of file is 

encountered on the linearized system file created by the 6-DOF 

simulation.  The loop is halted when the module EQREAD encounters 

an end-of-file condition. 

B.2.3 Module EQREAD 

The module EQREAD is used to read the file of lin- 

earized system dynamics created by the 6-DOF simulation and 

tho user input parameters. The linearized system dynamics 

file contains data representing the state dimension NX, the 

control dimension NC, the linearization time, the NX x NX dy- 

namics matrix, and the NX x NC control effectiveness matrix. 

The user input parameters include: 

• ICLASS; the canonic system class to be 
used in a particular run, e.g., diagonal, 
longitudinal-lateral, etc 

• NSIG; the number of significant digits 
desired in the final minimization of the 
difference between the true and canonic 
system, i.e., a closest canonical system 
lias been obtained when the next step of 
the iterative minimization produces pa- 
rameter values which agree to NSIG digits 
with values from the previous iteration 

• MAXFN; the maximum number of function 
evaluations to be performed during 
minimization of the canonic-to-true 
system L2 norm, this parameter is used 

to control overall execution time, 500 
is adequate for obtaining a reasonable 
match 

• I0PT; is a parameter that controls the 
initialization of the Hessian matrix 
(matrix of second partial derivatives) 
in the parameter optimization module 
ZXMIN.  Additional details concerning 
the function of IOPT are in the ZXMIN 
module description 
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IPRIMT; an integer array of length five, 
the elements of which act as print control 
flags in the subroutines of the EQUIVD 
program, setting all members of IPR1NT 
to one, provides full printing of inter- 
mediate variables for diagnostic purposes 

IORDER; an array of length NX which speci- 
fies the mapping of original state vari- 
able ordering in the 6-DOF simulation to 
a new state variable ordering consistent 
with the ICLASS specification; further 
details are in the descriptions of the 
REODRF and REODRG modules. 

Although, each of the parameters has a default value, 

careful selection of the MAXFN, NSIG, ICLASS, and IORDER parame- 

ters is required if EQUIVD is to generate meaningful results. 

Furthermore, validity checks on each of the aforementioned 

parameters is minimal, and great care must be exercised when 

IORDER is specified (each ICLASS has an associated IORDER vec- 

tor which is satisfactory for most cases). 

B.2.4 Modules REODRF and REODRG 

The modules REODRF and REODRG execute two essential 

functions of the canonical system matching procedure, 

• The reordering of the state and control 
vectors from the 6-DOF simulation ordering 
to the ordering implicit in the canonical 
system class definitions 

• Assignment of the canonical system class 
free parameters to the appropriate 
positions within the F and G matrices. 

REODRF and REODRG perform the aforementioned function 

for the F and G system matrices respectively.  Reordering of 

the state vector simply involves pre- and post-multiplying by 
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a matrix which contains all the locations necessary to inter- 

change columns and rows.  For example, the state vector [x, 

x~ Xo] is to be changed to the vector [x-^ x,  x^l, hence the 

transformation matrix is 

0 10 

10 0 

0  0  1 

(B.2-1) 

an appropriate dynamics matrix would then be transformed as 

T F   = T  F   T new   x old x (B.2-2) 

similarly the control effectiveness matrix is transformed with 

a pre- and post-multiplying where the post multiplying matrix 

is a NC. x NC. matrix for the control vector reordering, viz. 

G   = TT G T . T new   x old u (B.2-3) 

The second function performed by REODRF and REODRG is 

the assignment of the parameter vector (of the minimization) 

to the appropriate matrix positions.  Hence, if the canonic 

system is 

0  f 

0 

0 

2 

0  f 

(B.2-4) 

then the parameter vector 

B = (B.2-5) 
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must be reassigned to the canonical matrix at each iteration 

of £, i.e., 

Fc(l,l) = p{l) (B.2-6) 

Fc(2,2) = p(2) (B.2-7) 

Fc(3,3) = p(3) (B.2-8) 

Forming F  during each iteration of the minimization permits 

the computation of the matrix Lj norm (maximum singular value) 

of the canonical system match (F^     „ - F ). J true   c 

B.2.5 Module DEIGN 

Module DEIGN is used to compute the eigenvalues of 

the true and final canonical system dynamics matrix.  Although 

not an essential part of the canonical system matching pro- 

cedure, the eigenanalysis is useful when comparing the true 

and final canonical system matrices.  The eigenanalysis is 

also used to verify that reordering was done properly, i.e., 

the eigenvalues for each dynamic system matrix read in by the 

CASE software must match the eigenvalues printed during the 

6-DOF simulation run. 

B.2.6 Module ZXMIN 

Module ZXMIN performs the minimization of a cost func- 

tion (in this case the Lo norm of the difference between the 

true and canonical systems) with respect to a parameter vector 

without explicit calculation of the gradient of the cost with 

respect to the parameters.  This subroutine is supplied through 

the International Mathematical ana Statistical Library, detailed 

information can be founc in Ref. 60. 
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The algorithm implemented in ZXMIN is a quasi-Newton 

method developed by R. Fletcher and documented in Ref. 61. 

Although it does not require a gradient calculation, ZXMIN 
3 f     9 f does assume that the gradient (^— ... 5—) and the Hessian 

8f in 
(3 Q  ) exist.  The estimated gradient and Hessian for the 

i J 
function at the final parameter values are supplied by the 

subroutine upon completion.  The gradient estimates are printed 

by the main routine EQUIVD. 

B.2.7 Modules L2NRMF and L2NRMG 

The modules L2NRMF and L2NRMG as their names imply, 

evaluate the L0 norms of F-F and G-G respectively.  Where F^ I c       c   r      -^ c 
and G  represent the canonical system matrices and F and G 

represent the true, linearized dynamics matrices.  These sub- 

routines are supplied as external functions to the minimization 

subroutine ZXMIN, which in turn calls L2NRMF or L2NRMG to eval- 

uate the L2 norm, which is the function to be minimized at 

each iteration of the minimization procedure. 

Both modules contain a concise formulation for comput- 

ing the L2 norm.  The first step requires that the minimization 

parameters be reassigned to the appropriate elements of F or 

Gc through a call to REODRF or REODRG.  The result of F-Fc or 

G-G is then supplied to a singular value decomposition routine, 

LSVDF, which computes the m or n (minimum dimension) singular 

values.  The routine then selects the maximum singular value 

which is the L^ norm of the matrix difference, F-F or G-G . 

B.2.8 Module LSVDF 

The module LSVDF performs the Singular Value Decom- 

position (SVD) of a mxn matrix, A.  The SVD of a n-dimensional 

matrix A is defined as 
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A = U S VJ (B.2-9) 

where u is a mxm unity matrix, V is a nxn unity matrix, and 

S is a quasi-diagonal real matrix of the form 

S = 

0 

n (B.2-10) 

when m > n or 

S = 

0 

s2 
0   s m 

(B.2-11) 

when m < n or diagonal when m = n.  The s. are the singular 

values of the matrix A.  LSVDF arranges them in descending 

magnitude such that s-. is the maximum singular value.  As in 

the case of ZXMIN, LSVDF is supplied through the IMSL, hence, 

further information regarding operation of subroutine and addi- 

tional references on the singular value decomposition can be 

found in Ref. 60. 

B.3   MODULE DESCRIPTIONS:  RELATIVE CONTROLLABILITY AND 
LINEAR SIMULATION COMPUTATION 

The following descriptions include the module LSIM 

and all subroutines called by LSIM. As in Section B.2, de- 

tails concerning the subroutine arguments, array dimensions, 

or data types will not be presented. 
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B.3.1  Module LSIM 

Module LSIM is the central procedure for performing 

the linear simulation and computation of the relative control- 

lability index.  The majority of computations necessary for 

the linear simulation occur in LSIM, relative controllability 

computations occur in a call to the module CONTRO. LSIM requires 

the definition of five files for input/output and storage of 

intermediate results.  The file variable name, logical file 

numbers, and descriptions are listed in Table B.3-1. 

TABLE B.3-1 

LSIM INPUT/OUTPUT AND INTERMEDIATE FILES 

VARIABLE 
NAME 

DEFAULT 
VALUE 

DESCRIPTION 

LFSIM 

LFEQ 

LFGM 

LFPHI 

LFLSIM 

8 

9 

19 

20 

17 

6-DOF simulation trajectory data file 

Matched canonical systems file from EQUIVD 

Temporary file for control matrix F 

Temporary file for transition matrix <J> 

Output file of the linear simulation trajectory 

The computation of the linear canonical system uses a 

piecewise time-invariant approximation to the continuously 

time-varying dynamics of the aircraft in accordance with the 

definitions in Chapter 4, Subsection 4.3.3.  The canonical F 

and G matrices computed in EQUIVD are read from file LFEQ. 

Two sets of control sequences and the initial state are read 

from the 6-DOF simulation trajectory file LFSIM, i.e., u(t ), 

., u(t ) and x(t ).  The next state, ^(t,) is computed u(t1), 

by propagating the discrete equivalent of the continuous ma- 

trices F and G. The specific equations are 
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x(t1) = *(t1,t0) x(to) + r(t1,to) u(to)        (B.3-1) 

where 

*(t1,t0) = e  i 0 (B.3-2) 

r(t:l'to) =J   eFT dT G (B.3-3) 

Computation of the matrix exponential Eq. B.3-2 and the integral 

in Eq. B.3-3 occur in module EXPI. 

The computation of the state vector in Eq. B.3-1 occurs 

for every subsequent interval (t^^k+l^ un,:il ^+1  excee^s  ^e 
time at which a new set of canonic matrices are available. 

Equations B.3-2 and B.3-3 are then recomputed to supply a new 

^^k+l^k^ ancl r^,:k+l,t:k^' The Previous * ancl r are storecl in 

LFPHI and LFGM for subsequent use in the relative controlla- 

bility computations.  At each time the state vector x(tk) is 

stored in the file LFLSIM for subsequent plotting. 

B.3.2 Module SIMRD 

Module SIMRD performs the function of reading the 

6-DOF simulation trajectory data in the file LSIM.  The routine 

extracts the state and control vectors and* their time-tag from 

the ensemble of 6-DOF simulation data.  When running on IBM 

computers, this routine also converts the simulation data from 
single to double precision. 
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B.3.3 Module REODRV 

Module REODRV reorders the state and control vectors 

read from the 6-DOF simulation file to conform with the state 

and control ordering associated with the canonical matrices in 

the LFEQ file.  The particular reordering is selected by the 

user when the ICLASS variable is specified.  REODRV contains a 

table reordering specification and class designations identical 

to those in REODRF and REODRG. 

B.3.4 Module EXPI 

The module EXPI implements an optimized algorithm 

for computing the matrix exponential, i.e., the right hand 

side of Eq. B.3-2.  Numerical computation of the transition 

matrix is accomplished by directly computing a fixed number of 

terms of the power series, 

oo 

eFAt . V* (Fit)" 

n=0 

The number of terms to be computed is dependent upon the rela- 

tive magnitudes of the interval At, and the matrix F.  In gen- 

eral, if FAt is large compared to the floating-point precision 

of the computer in use a great many terms will be required for 

an accurate solution.  To avoid this costly matrix expansion 

over many terms, the EXPI algorithm divides the interval, At, 

into 2J sub-intervals such that j is the smallest integer 

satisfying 

S |F/U| < Maxnorm (B.3-5) 
2J 
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where ||FAt|| is the L^ norm, the maximum row sum of the 

product FAt. 

Upon computing the sub-interval constant j, the algo- 

rithm then proceeds to compute the transition matrix over the 

sub-interval 

"sub = r <B-3-6) 

This sub-interval should be small enough so thaL only three 

terms of the power series expansion are required. The semi- 

group property of the transition matrix 

<t)(t3,t1) = *(t3,t2) *(t2,t1)     (B.3-7) 

can be used to compute the transition matrix for the original 

interval, viz, 

*<JAtsub> - ""^W <B-3-8) 

EXPI also computes the integral of the transition 

matrix over tha.  total interval, i.e.. 

.At 

r =| e"   di (B.3-9) 

0 

-At 

-i ^ 
The definition of the matrix exponential in Eq. B.3-4 

can be used to rewrite Eq. B.3-9 as 

m     ^NAi.N+l r(T) = Z L(wrn: (B.3-10) 
N=0 
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which reduces to 

F N,
At: (B.3-11) 

N=2 

00  ,N-1_N-1 
r(T) = At (I + ^ F '^  " ) (B.2-12) 

N=2 

r(T) = At [I + ^ ^ J (B.3-13) 
\   N=2    / 

where 

ß = At • F (B.3-14) 

Equation B.3-13 is computed by subdividing At into 2J sub- 

intervals as was the case with the transition matrix, Eqs. B.3-5 

and B.3-6.  However, the F's for each subinterval cannot be 

multiplied to yield 

T = At eFAtsub (B.3-15) 
2J 

/•At/2j 

0 

r = I     eFT dx (B.3-16) 

Thus 

.ok 

i   ft/2    ^  A^n) (B.3-17, r' = 
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^.At /-A t/2 

T =     eFl di =       eFl dt 

•'o       Jo 

/•At/2 

+ eFät/2    I    eFT dx (B.3-18) 

Equation B.3-17 is computed recursively to yield the appro- 

priate matrix f over the complete interval. 

B.3.5 Module CONTRO 

The module CONTRO is the central procedure for com- 

puting the relative controllability index, i.e., Eq. 4.3-12. 

Separate procedures are called by CONTRO to compute various 

elements of that equation.  Namely, the grammian, reachability 

condition number, intrinsic drift factor, and the L norm of the 

transition and control effectiveness matrices."  CONTRO also 

includes control logic to perform the relative controllability 

over a subinterval of the trajectory data available.  For ex- 

ample, a user can specify the computation of the relative con- 

trollability at each interval for which a canonical system has 

been computed or a single relative controllability index for 

an entire trajectory, t to t^, may be chosen. 

B.3.6 Module GRMIN 

Module GRMIN is used to compute the Grammian, reach- 

ability condition number, and the intrinsic drift factor for a 

specified interval of the simulation trajectory.  The data 

'Each of these terms is defined in Chapter 4, Section 4.3 
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necessary for these computations is obtained from the files 

LFPHI and LFGM the files which respectively store the transi- 

tion and discrete control matrices.  Selection of the interval 
is controlled by number of matrix pairs read from LFPHI and 
LFGM. 

The equations which have been implemented in GRMIN 
have been described in Subsection 4.3.3.  Recall from Section 4.3, 
that once computation of the transition matrix is obtained, the 

linear canonical system is assumed to be a discrete time-varying 
system.  Thus, the intrinsic grammian and reachability grammian 
are computed as 

V1 

w(k ,k ) = Y]   «Kk. .Ä+1) ru) rTU) ^(k, ,ä+I) 0  f  ztf f tt 
to (B.3-19) 

and 

\-i 
WI(kt„,ktf

) = 2 ♦(kt/:'
i!+1) *T(ktc.l+l) (B.3-20) 

o 

The eigenanalysis module DEIGN, previously described in Sub- 

section B.2.5, is then used to compute the minimum and maximum 

eigenvalues of W(k. ,k. ) and W, (k,. ,k. ) to yield \c  and AT 
to tf      

i ^ tf b     L 

and hence, XD and |j. 

B.3.7 Module SUPNRM 

The module SUPNRM is used to compute the supremum L2 
norm of the collection of transition and discrete control ma- 

trices stored on the files LFPHI and LFGM.  Thus, the supremum 
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no rm over the interval (t .tr) of <t> and T  are computed in ac- 

cordance with Eqs. ^.3-42 and 4.3-43.  The I^ norm required at 

each available value of * and f is computed with the singular 

value decomposition, where the Lj  norm of a matrix is equi- 

valent to maximum singular value of that matrix. Module LSVDF, 

previously described in Subsection B.2.8, computes the maximum 

singular value of each 4» and r. 
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APPENDIX C 

REVIEW OF UNDERLYING MATHEMATICAL CONCEPTS 

The purpose of this appendix is to provide a review 

of the underlying mathematical concepts that are essential for 

an understanding of the canonical system norms and the relative 

controllability theorem presented in Chapter 2 and Section 4.3. 

The concepts that require review are: 

• Induced matrix norms 

• Controllability for linear time-varying 
systems and derivation of the Grammian, 

Section C.l discusses induced matrix norms and Section C.2 

presents basic linear time-varying controllability definitions. 

C.l    INDUCED NORMS 

The purpose of this section is to review the basic 

tenets and use of norms and induced norms for measuring the 

size of vectors and of linear operators/mappings.  It is best 

to begin with a discussion of norms and then proceed to a dis- 

cussion of induced norms of linear maps.  More detailed dis- 

cussions of norms ir general can be found in Ref. 36 (Chap- 

ter 2), an engineering text, and even more rigorous discussion 

can be found in mathematics texts, such as Ref. 77, 45, and 41 

in order of increasing difficulty. 
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C.l.l Definition of Norms 

A norm is effectively a mapping from some vector space 

X to a scalar which is an element of R+.  Hence the function 

H : X -► R+ (read n is a function that maps X into R+) is a norm 

if and only if 

a) x€X and x / 0 implies that ri(x) > 0" 

b) n(ax) = |a|r|(x) for only a  which is equal 
to a real number and any x which is 
contained in X 

c) n(x+y) ± r\(x)  +  n(y) for x and ^ con- 
tained in x (also tcnown as the triangle 
inequality). 

In general a linear vector space can have many possible norms. 

The combination of a linear space X and a valid norm on that 

space n are a pair (X,r|) an(i is called a normed space. 

Throughout this report a vector space that is repeat- 

edly used for describing the aircraft dynamics as a function 

of time is the space R .  Rn is a space of n dimension vectors 

that consist of real numbers.  Mathematically one says thaf: 

x E R  which means x = (x-, , xn   ...   x ) with x. = R (x. equal 
- -12     n       i      :L  n 
to a real numbe-) for all i.  The most general norms on R are 

n 

ixi 1 - ^ Ix^ (C.l-1) 

i=l 

n 

x 4 
P 

i = l 

J] Ix.lP)    1 < p < oo (C.l-2) 

^The zero vector is indicated by 0 
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Ixll^ ^ max |x.| (C.l-3) 
i   1 

When the parameter p in the norm defined in Eq. C.l-2 is set 

equal to 2, the traditional root sum of squares vector magni- 

tude results which is known as the Euclidean norm of the 

vector x. 

The space X need not be just the space of n-tuples 

(vectors) but can also be a space of functions (scalar or 

vector-valued).  Any space x that is a vector space (i.e., 

satisfies the axioms of a vector space) can have a norm de- 

fined on it.  Hence consider a space X of functions f that map 

real numbers into real numbers and f is locally integrable, 

i.e. , 

X={f:R^R|fis locally integrable)       (C.l-4) 

Then a general set of norms for this function space are 

llxl^ ^ j*|x(t)|dt (C.l-5) 

l|x|| ^ (J|x(t)|pdt)     1 < p < - (C.l-6) 

llxll^ ^ ess sup |x(t)|* (C.l-7) 
t e R 

where x(t)G X. 

Note that since X is a vector space x(t) is any func- 

tion that satisfies the following axioms of a vector space 

ress sup reads the essential supremum where supremum is the 
least upper bound. 
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x + y = y + x (C.l-8) 

(x+y) + z = x + (y+z) (C.l-9) 

There is a null vector 0 in X (CIO) 
such that x + ((> = x  for all x in X 

a(x+y) = ax + ay (C.l-11) 

(a+ß)x = ax + ßx (C.l-12) 

(aß)x = a(ßx) (C.l-13) 

Ox = (|>,  Ix = x             (C.l-14) 

It is easy to demonstrate that the collection of all 

real-valued continuous functions on some interval [a,b] con- 

tained in R+ form a vector space. 

The set of function space norms defined in Eqs. C.l-5 

to C.l-7 are also known as L-, . I  and L norms of the L-, , L . 
1  p     o9 i  p 

L^ spaces.  The norm in Eq. C.l~6 is the L^ norm of the Lo 

space when p equals 2.  The L2 nom   is the norm repeatedly 
used in the discussions of the canonical systems matching 

technique (Section 3.1.2) and the relative controllability 

theorem (Section 4.3). 

An analogous set of norms to those just defined for 

vectors and functions can be defined for nxn matrices.  Let 

the vector space L consist of the of all nxn matrices with 
real number elements, X = RnXn. Then the following are norms 
on RnXn. 

n 
l|A||^ = max /  I a.. I  (column sums) (C.l-15) 

i=l 
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I |A| |2 ^ max [A.^A)]
172 (C.l-16) 

n 

IIAM^ ^ max Y*  la.J (row sums) (C.l-17) 
1 j=l 

where \.(M) denotes the i-th eigenvalue of M.  Equation C.l-16 

is the Euclidean norm of a matrix and is equivalent to the 

maximum singular value of the matrix, hence the use of the 

singular value decomposition in the NFQ numerical procedures 

described in Section 4.3 and Appendix B. 

C.1.2 Definition of Induced Norms 

An induced norm describes a norm of a linear operator 

that is induced by the vector norm associated with the space 

from and to which the operator maps.  For example an nxn matrix 

A can represent the linear mapping A Rn -> Rn, hence given a 

vector x e Rn.  The equation 

y = Ax (C.l-18) 

maps x into y which is contained in Rn. 

A collection of all linear maps that map X into X 

will be represented by^f(X,X).  Let ||-|| be a norm on X and 

an operator Aej/^x.x).  If we define a function | | • | | .■ from a 

subset ofJMX.x) into R+, positive real scalars, by 
i 

|A||. 4 SUp ilAxJI (C.l-19) 
1  x^(D llxll 

Then MAM. is called the induced norm of the map A or the 

norm of an operator induced by the vector norm 11*11. 
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If we consider the vector equation in Eq. C.l-18 the 

induced norm on the matrix A (which is a linear operator) is 

defined as 

IIAXM 
| |A| | . =  max    (C.l-20) 

1   llxM^O  llxll 

if this induced norm is with respect to the Euclidean vector 

norm, then 

IIAxlU 
||A||. =  max         (C.l-21) 

1   l|x||2/0  ||x||2 

which can be proved to be 

MAM. = ||A||2 (C.l-22) 

where the Euclidean norm of the matrix A was defined in Eq. C.l-16 

Note if A maps a function x(t) into a function y(t), i.e., 

x(t)  = Ay(t) (C.l-23) 

then the induced norm of the matrix is the Lo norm and is 

defined by 

M A|IL = maxJ\i(A
TA) (C.l-24) 

where the operator A is a constant nxn matrix.  The Ly  induced 

norm defined in Eq. C.l-24 is the induced used in calculating 

the relative controllability index as described in Section 4.3 
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C.2   DEFINITION OF THE CONTROLLABILITY GRAMMIAN 

The purpose of this section is to review the defini- 

tion of controllability (reachability) and the derivation of 

the controllability Grammian for linear systems.  Bear in mind 

that the generalization of the concepts described in this sec- 

tion to nonlinear systems is the objective of Section 4.2.1. 

The linear system controllability concepts, however, are heavily 

used in the derivation of the relative nonlinear controllability 

theorem presented in Section 4.3. 

The derivation of the controllability Grammian begins 
with the definition of reachability.  The definition that fol- 

lows is a restatement of the linear system reachability defini- 

tions contained in Section ^.2.1.  Given the n-dimensional 

linear system 

x(t) = F(t) x(t) + G(t) u(t) (C.2-1) 

The system in Eq. C.2-1 is said to be completely 

if the set o 

entire state space, i.e 

reachable if the set of reachables states ß(x ) equals the 

Q(x ) = Rn V x (C.2-2) —o       —o 

where a reachable state, a state contained in the set fi(x ), is 

any state for which there is an input u(t) that can drive the 

system from x (t) to x(t). Complete controllability is simply 

a specialization of reachability to include the zero vector in 

the set of reachable sets.  Specifically, a system is completely 

controllable if and only if x = 0 e fi(x ) for all x . J — o        —o 

The distinction between controllability and reacha- 
bility is important for discrete time systems where a system 
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may be reachable but not controllable or vice versa.  However, 

as stated in Section 4.2.1, reachability and controllability 

are equivalent for continuous-time systems. 

The controllability Grammian arises in an attempt to 

devise a test for complete reachability/complete controllability 

Furthermore, there are familiar tests for controllability which 

do not involve the Grammian matrix introduced in Section 4.3. 

Take heed, however, that these other tests apply only to time- 

invariant systems.  A quick review will clarify this point. 

Given the n-dimensional linear time-invariant system 

x(t) = Fx + Gu (C.2-3) 

where F is an nxn constant matrix and G is a nxm constant 

matrix.  The system in Eq. C.2-3 is said to be completely con- 

trollable if the matrix 

C = [A : Ab : ... : An'lh] (C.2-4) 

is of rank n.  If m=l, i.e., a single-input system then C will 

be a square matrix, thus, the test requires that C be non- 

singular, i.e., invertible.  This test however, is only valid 

for constant F and G and is meaningless for a system in which 

either F or G is time-varying. 

Derivation of a controllability test whether for 

time-invariant or time-varying systems, involves an inspection 

of the solution of the differential equations in timo.  A 

linear time-varying system of the form 

x(t) = F(t) x(t) + G(t) u(t) (C.2-5) 
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has a solution described by the variation of constants formula 

(see Ref. 4A) 

x(t) = «Kt0,t) x(t0) +1   (*(t0,T)B(T)u(i)]dx  (C.2-6) 

^ 

where 4)(t ,t) is the transition matrix for the system and is 

defined as 

«t>(t,t0) = I + I  da1F(a1) + j  da1F(a1) J  da2 F(a2) + 

o o o 
(C.2-7) 

The expression for solution of the transition matrix is known 

as the Peano-Baker series.  In general, it is difficult to com- 

pute the series in Eq. C.2-7 and thus, numerical integration of 

the differential equation is usually preferred.  Equation C.2-7 

does simplify if the dynamics matrix satisfies the condition 

F(t) F(a) = F(a) F(T) V T, O (C.2-8) 

then the transition matrix becomes 

)da r F(a 
<|.(t,to) = e 0 (C.2-9) 

An examination of the controllability definition and 

the variation of constants formula Eq. C.2-6, reveals that a 

test for controllability, i.e., that a finite energy input 

u(') can bring the state to zero a time tf, requires a test 

179 



on the integral expression of Eq. C.2-6.  Ultimately it will 

be shown that the system Eq. C.2-5 is completely controllable 

if and only if the rows of *(t .•) G(*) are linearly indepen- 

dent on [t0,tr].  Although it will be rigorously demonstrated 

that the previous statement must be true, intuitively one can 

sense that if the product <t>(t ,•) G( • ) does not contain n 

linearly independent rows, i.e., full rank, then the integral 

expression on the right hand side of Eq. C.2-6 does not affect 

all the states.  In other words u(') may not influence one or 

more states. 

A general and well known test for linear independence 

of fu 

Grammian matrix 

of a set of functions {f-O). i = l,...,n} is that their 

G = [G..] (C.2-10) 

ftf G
ij = J   fi(x)fj(i)dx (C.2-11) 

^ 

be nonsingular.  Consequently, if we apply the Grammian test 

to our controllability condition then the controllability 

Grammian becomes 

W(to,tf) = I   4>(to,T)G(x)GT(x)*T(t.0,T)di      (C.2-12) 

t o 

and for the system in Eq. C.2-5 to be completely controllable 

it is necessary and sufficient that W(t ,tr) be nonsingular. 

We will now demonstrate how the two conditions (1) «t»(to, • )G( • ) 

have n linear independent rows and (2) W(t ,tr) nonsingular 

arise. 

180 



Recall that for complete controllability it is neces- 

sary that there exists a control u(*) that for any condition 

drives the state to zero.  Hence Eq. C.2-6 can be set to zero 

if 

ftf 0 = x(tf) = *(tf,tf)x(t0) + I   <D(tf,i)G(x)u(i;di  (C.2-13) 

or 

ftf •*(tf.to)x(to) = I  <J>(tf>x)G(T)u(T)dx        (C.2-14) 

to 

which can be rewritten as 

-x(t0) -   j'      ^     ---1 f(tf,i)<l> x(tf>to)G(x)u(i)di      (C.2-15) 

t. 

which becomes 

"f 
■x(t0) = J L(x)u(x)dx (C.2-16) 

where L(x) = (t)(to,x )G(x) Eq. C.2-16 is the result of the fol- 

lowing two properties of state transition matrices 

«|.(t,t0) = <r1(t0,t) (C.2-17) 

«l>(t1,t2) = ♦(t1,t3) «l)(t3,t2) (C.2-18) 

(Eq. C.2-18 is known as the semigroup property). 
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Equation C.2-16, an integral equation, must be solved 

for the unknown function u(-). If we approximate the integral 

in Eq. C.2-16 wiir a summation 

N-l 

E 
1=1 

x(to) = j^ Ld^ud.)^        (C.2-19) 

where 

x. = t + iA (C.2-20) 
i   o 

i = 0, .... N (C.2-21) 

NA = tf - t0 (C.2-22) 

LCI.) = ^{to,xi)G{ii) (C.2-23) 

then 

-x(t0) =y^ (C.2-24) 

where 

^= lu(io), ... U(TN_1)]
T
       (C.2-25) 

the collection of u(*) functions that satisfy Eq. C.2-16 and 

if = [L(TO)A   L(iN_1)Al   (nxn matrix)      (C.2-26) 

the collection of L(-) functions that satisfy Eq. C.2-16. 

Equation C.2-2A is a system of linear equations with more un- 

knowns than equations, i.e., undetermined.  However, it can be 

demonstrated that there can be a solution U if and only if 

-x(to) is contained in the range space of-/, i.e., -x(t0) is a 

linear combination of the columns ofi^.  Since -x(t ) is a 
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n-dimensional vector then „x must have at least n linearly 

independent columns.  Thus ^T must be full rank or L(i) must 

be full rank, i.e., have n linearily independent rows, which 

is condition (1) for controllability. 

A particular solution of Eq. C.2-24 is 

T  = -^(^/V1 x(to)       (C.2-27) 

where invertibility ofj^jt  can be verified using Sylvester's 

equality.  Combining Eqs. C.2-19 and C.2-27 yields 

N-l 

^yT =E Ld^L^t.)^ 
i=0 

N-l 

(C.2-28) 

= A ^ «l>(to.ii)G(Ti)G
T(ii)«t.T(t0,xi)A      (C.2-29) 

i=0 

and thus 

Tv-1 u^(i.) = -G1^^«^^,!.^^^1)"1 x(t0)      (C.2-30) 

which becomes 

^i^^o'-. 0^(1.) = -GMx^Mt^.t.) 
'N-l 

2*(t0.ii)G(t.)G
T(ti)«

T(t0.iiM 
i=0 

(C.2-31) 

Consequently, if limits are applied to Eq. C.2-31, it approaches 

the continuous equation, with the components in brackets be- 

coming the Grammian integral.  The limits to be applied are 
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and 

A  -»•  0 

N ^  oo 

NA  =  tf - to (C.2-32) 

T. = T (C.2-33) 

which yields 

u^(i) = -GT(T)*T(to,T)W"
1(to,tf)x(to) (C.2-34) 

Equation C.2-34 is a general equation for finding a control 

u(*) that drives the system to x(tr) = 0 from any x(t ). 

Hence, if such a u(') exists, i.e., the system is completely 

controllable, then Eq. C.2-34 must apply which requires a non- 

singular controllability Grammian. 
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GLOSSARY 

G.l   GENERAL SYMBOLS 

Ü A A B A is by definition B 

-> a -»■ b as a approaches b 

i a 4- b as a approaches b from above 

V for ail; for every 

G.2   SET NOTATION 

£ a e B   a is an element of B; a belongs to B 

c   A c B   A is a subset of B; A is contained in or equal 
to B 

C   AC B   A is a proper subset of B; A is contained in 
but not equal to B 

Union of Set A with Set B 

Intersection of Set A and Set B 

p implies q 

q implies p 

p implies and is implied by q; p if and only if q 

G.3   LINEAR ALGEBRA 

R     field of real numbers 

R     vector space of dimension n 

R+    space of functions on the interval [0,»] 
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u A U  B 

n A n  B 

=> p =» q 

•c= p ^ q 

« p « q 



x x is a vector 

0 zero vector of dimension n 

||x|| vector norm 

||A|| norm of matrix induced by associated vector norm 

A% complex conjugate transpose of A 

T T x ,A transpose of x and A 

sup the supremum; the least upper bound 

inf the infimum; the greatest lower bound 

fi(xo) set of states x reachable from x 

0 (•) neighborhood of (•); a number less than or equal to eh I 

00 

C space of smooth complex functions; all derivatives of 
order 1 to » exist 

C space of analytic functions 

£(•) or Q(•)    vector polynomial function of (•) 

A^ ith row of the matrix A 

A. jth row of the matrix A 
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